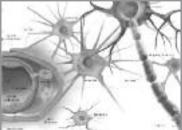

scienza e tecnica

TRIMESTRALE DI INFORMAZIONE DELLA SOCIETÀ ITALIANA PER IL PROGRESSO DELLE SCIENZE

ANNO LXXXV - N. 561-562 gen.feb.mar. - apr.mag.giu. 2022 - Poste Italiane SpA - Sped. in A.P. - D.L. 353/2003 (conv. in L. 27/2/2004, n. 46) art. 1, comma 2, DCB Roma



<mark>UNA PATRIA PER LA SCIENZA</mark> UNA SCIENZA PER LA PATRIA

IL CONTRIBUTO DELLA SOCIETÀ ITALIANA PER IL PROGRESSO DELLE SCIENZE

ARCHEOMATEMATICA IL METODO MESOPOTAMICO

GAMIFICATION POTENZA, VANTAGGI E RISCHI

LO SGUARDO DELLA DEA CONDIVIDI E COLLABORA

PREVISIONI AZIENDALI E PERSONALI

NEI CEBI L'USO DI STRUMENTI IN PIETRA MIGLIORA LA DIETA

MORTALITÀ DA ONDATE DI CALORE NEL MEDITERRANEO

CERVELLO: SCOPERTI MECCANISMI MODULATORI NELLE TRASMISSIONI SINAPTICHE

LA LUCE LIQUIDA IN UN CHIP

ALZHEIMER: NUOVI ELEMENTI PER COMPRENDERE LA NEURODEGENERAZIONE

Sommario

- 1 Una patria per la scienza una scienza per la patria: il contributo della Società Italiana per il Progresso delle Scienze
- **1** Archeomatematica il metodo mesopotamico
- Gamification: potenza, vantaggi e rischi. Un'analisi paradigmatica nella società post-moderna
- **16** Lo squardo della dea, condividi e collabora
- 17 Previsioni aziendali e personali

18 notiziario

Nei Cebi l'uso di strumenti in pietra migliora la dieta Mortalità da ondate di calore nel Mediterraneo Cervello: scoperti meccanismi modulatori nelle trasmissioni sinaptiche Luce liquida in un chip

Alzheimer: nuovi elementi per comprendere la neurodegenerazione Scoperto meccanismo di defribillazione intrinseco del cuore Jstor nella Biblioteca Nazionale Centrale di Roma 200 nuovi pesci: il Mediterraneo è il mare più invaso al mondo

Guglielmo Lucentini

SCIENZA E TECNICA

trimestrale a carattere politico-culturale e scientifico-tecnico Direttore Responsabile: Lorenzo Capasso

ANNO LXXXV - N. 561-562 gen.feb.mar. - apr.mag.giu. 2022 - primo-secondo trimestre 2022
Reg. Trib. Roma n. 613/90 del 22-10-1990 (già nn. 4026 dell'8-7-1954 e 13119 del 12-12-1969).
Direzione, redazione e amministrazione: Società Italiana per il Progresso delle Scienze (SIPS)
via San Martino della Battaglia 44, 00185 Roma • tel/fax 06.4469165 • www.sipsinfo.it • e-mail: sips@sipsinfo.it • pec: sips@pec.it
Cod. Fisc. 02968990586 • C/C Post. 33577008

UniCredit Banca di Roma • IBAN IT88G0200805227000400717627 Università di Roma «La Sapienza», Ple A. Moro 5, 00185 Roma Stampa: Istituto Salesiano Pio XI - Via Umbertide, 11 - 00181 Roma - tel. 06.7827819 - 06.78440102 - fax 06.78.48.333 - e-mail: tipolito@donbosco.it Scienza e Tecnica print: ISSN 0582-25800

UNA PATRIA PER LA SCIENZA UNA SCIENZA PER LA PATRIA

il contributo della Società Italiana per il Progresso delle Scienze

di ENZO CASOLINO

erché parlare di una Patria per la Scienza e di una Scienza per la Patria?

L'espressione ci riporta al movimento dei Congressi dei Naturalisti italiani dei primi decenni del 1800, e il loro ruolo avuto nel processo di Unificazione Italiana; ma presenta anche oggi aspetti speculari rispetto al processo di Unificazione Europea.

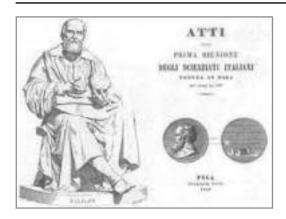
Qui esaminiamo in particolare i profili giuridici che caratterizzarono questi Congressi fino al 1875 e correlativamente, dopo tale data, denotarono finalità e struttura della Società Italiana pel Progresso delle Scienze.

Ma dove risiede il fondamento delle Riunioni dei naturalisti?

A partire dalla Rivoluzione Industriale del 18° secolo, nel corso dei decenni successivi si diffonde, in particolare in Europa, la consapevolezza del ruolo della scienza per lo sviluppo economico e sociale. Per cui oltre alla "scienza per conoscere" occorre coltivare anche, e soprattutto, la "scienza per fare". È questo il sentimento, e il convincimento, che trova la massima teorizzazione nelle linee del "positivismo" del filosofo francese Auguste Comte¹.

Tutto questo determina tra gli scienziati un comune sentire e una maggiore propensione all'incontro tra studiosi - come vuole il metodo scientifico - anche e soprattutto al di là dei confini nazionali. Specificamente il percorso della "scienza per fare" mobilita i "naturalisti" - qualificazione che contraddistingue, all'epoca, ogni ramo di studiosi e di professionisti, compresi medici e agronomi - dediti a coltivare ogni sorta di scibile con metodo scientifico e non meramente speculativo. Per cui il 19° secolo registra l'acuirsi

della propensione, in buona parte d'Europa, a rinvenire le forme organizzative più confacenti per sviluppare i rapporti tra "scienziati operativi".


Ma perché, in particolare in Italia e in Germania, si ricorre alle *riunioni di naturalisti* e non alle *società di naturalisti* come, ad esempio, la Royal Society che in Inghilterra esisteva dal 1660 ed era ben conosciuta in Europa? Semplicemente perché, a differenza dell'Inghilterra, in Italia e in Germania le condizioni politiche generali impedivano di costituire aggregazioni basate sul requisito dell'internazionalità: requisito essenziale, allora come oggi, per il progresso scientifico.

Si consideri che, a valle del Congresso di Vienna (1814-1815) che aveva ridisegnato l'assetto politico dell'Europa all'indomani della ventata napoleonica, la Germania contava 39 Stati (37 piccole entità statuali più Prussia e Austria) aggregati nella cosiddetta Confederazione Germanica). L'Italia, a sua volta, registrava 6 Stati (Regno Lombardo-Veneto, Regno di Sardegna, Ducato di Parma, Granducato di Toscana, Stato pontificio, Regno delle due Sicilie). In quei contesti - sul piano istituzionale - era impossibile creare una associazione scientifica con caratteri di intertestualità, nel mentre - sul piano politico - le attività naturalmente innovative praticate dai naturalisti venivano riguardate con naturale sospetto dalle polizie di tali stati impegnati in obiettivi di conservazione, quando non di restaurazione.

Per cui l'unica forma organizzativa praticabile era quella dei Congressi scientifici realizzati, a turno in una confacente città dei vari stati, onde conferire ad essi un qualche carattere di intertestualità. In sostanza trattavasi di "congressi itineranti" praticati da studiosi caratterizzati da depositari di una decisa unità culturale a cui non corrispondeva una unità politico-statuale.

Ma, in particolare per gli scienziati italiani, le motivazioni di carattere scientifico - con la loro intima propulsione verso la comunione delle idee e dei saperi - si travasavano inesorabilmente nella loro sfera politica conducendoli a coltivare l'ideale di uno stato unitario. Infatti esso costituiva l'unica entità che potesse assicurare, oltre alla comune lingua e cultura, anche uno spazio politico e giuridico comune, l'uni-

¹ Vd. Cours de Philosophie Positive, Paris, Baillière et Fils, Paris, 1869.

co confacente alle necessità dello sviluppo scientifico. Il che comportava ovviamente la comune libertà di stampa, la comune libertà di pensiero e di riunione; rigettando così tutto un contesto politico in cui anche l'espatrio - ancorché temporaneo - doveva essere autorizzato di volta in volta con apposito lasciapassare dall'autorità di polizia.

Come è noto, riguardo agli scienziati italiani, la Prima riunione si realizza a Pisa. Promotori ne sono Carlo Luciano Bonaparte (zoologo, nipote di Napoleone I), Vincenzo Antinori (direttore del Museo di Fisica e Storia Naturale di Firenze), Giovanni Battista Amici (fisico, naturalista e astronomo di S.A.I. e R. il granduca di Toscana), Gaetano Giorgini (provveditore generale dell'I. e R. Università di Pisa), Paolo Savi (professore di storia naturale all'Università di Pisa) e Maurizio Bufalini (professore di clinica e medicina nell'I. e R. Arcispedale di Firenze)².

La scelta di Pisa e del Granducato di

Toscana risultava la più confacente dal punto di vista logistico come pure dal punto di vista della dotazione di istituti scientifici; e anche - in qualche misura - in ragione delle innovazioni ivi praticate, ad esempio, riguardo all'ammodernamento dell'agricoltura. Si consideri che la Toscana - grazie ai naturalisti locali (si pensi al botanico Giuseppe Raddi) - aveva avuto riconoscimenti internazionali³.

La Prima Riunione si svolge, quindi, a Pisa dal 1° al 15 ottobre 1839. È presieduta dal naturalista Ranieri Gerbi - ed è aperta agli "italiani che applicano l'animo alle discipline che diconsi naturali" per cui fu definita anche "Prima Riunione dei naturalisti o dei dotti".

L'iniziativa riscuote una vasta eco in tutta Italia e viene, tra l'altro, celebrata dal Giusti con i versi:

di sì nobile congresso di rallegra con sé stesso tutto l'uman genere.

Nel mentre i suoi promotori vengono omaggiati con il verso⁵:

Che con sublimi e generosi affetti ridonarono una patria agli intelletti

Chi "ridonarono una patria agli intelletti"? Politicamente i promotori e i partecipanti, pur tutti patrocinatori dell'Unità d'Italia, si differenziavano riguardo agli strumenti per conseguirla. All'interno di quella comunità, infatti, si esprimevano liberamente scienziati di aspirazioni federaliste tra cui il Marchese Cosimo Ridolfi e il professore Carlo Matteucci; come di aspirazioni unitarie ma non sabaude (Luciano Bonaparte); come di aspirazioni repubblicane (Ottaviano Fabrizio Mossotti); come pure di aspirazioni unitarie filosabaude (vedi Leopoldo Pilla⁶ e il filosofo Terenzio Mamiani).

Queste motivazioni avrebbero pervaso anche i successi-

² Vedi Lettera circolare in cui si annuncia l'apertura a Pisa, dal 1° al 15 ottobre 1839, del "Consesso dei professori e dei cultori delle scienze fisiche in Italia, comprese la medicina e l'agricoltura", firmata da Carlo L. Bonaparte, Vincenzio Antinori, Giovanni Battista Amici, Gaetano Giorgini, Paolo Savi, Maurizio Bufalini, 28 marzo 1839. Seconda lettera circolare nella quale si forniscono ulteriori informazioni sul "Consesso dei cultori delle scienze naturali", firmata da Carlo L. Bonaparte, Vincenzio Antinori, Giovanni Battista Amici, Gaetano Giorgini, Paolo Savi, Maurizio Bufalini. Firenze, 13 agosto 1839. Manifesto in cui si comunica ai partecipanti alla "prima riunione di naturalisti, medici ed altri scienziati italiani" a firma del presidente del Congresso Gerbi e del segretario generale Corridi. Pisa, 7 ottobre 1839.

³ Ad esempio: i meli della campagna toscana furono scelti per essere trapiantati nel giardino della Casa Bianca a Washington.

⁴ Vd. Relazione Corridi, in *Atti della Prima Riunione degli Scienziati Italiani tenuta in Pisa nell'ottobre del 1839*, seconda edizione, Tipografia Nistri, Pisa 1840, p. 3; *Il Primo Congresso dei Dotti a Pisa*, Volume pubblicato nella ricorrenza del I° centenario a cura del Comitato ordinatore della XXVIII Riunione della SIPS, Industrie Grafiche V. Lischi e Figli, Pisa, 1939.

⁵ Vd. Pacinotti, Luigi, Biografia del Cav. Prof. Ranieri Gerbi, Presidente generale della Prima Riunione degli scienziati italiani, in *Atti della Prima Riunione*, cit., p. 316.

⁶ Che infatti muore a Curtatone (1848) in quanto componente del Battaglione degli Universitari toscani a sostegno di Carlo Alberto.

vi Congressi: Torino (1840), Firenze (1841), Padova (1842), Lucca (1843), Milano (1844), Napoli, (1845) Genova, (1846) Venezia (1847), che fu interrotto dall'intervento della polizia.

La simbiosi tra "scienza e patria" pervade quindi, in quegli anni, tutta la vita di queste Riunioni, in quanto essa costituiva il sentire comune dei partecipanti e il loro più profondo convincimento. In sostanza, al di là di sollecitazioni più o meno romantiche, questi cultori e praticanti di scienze della natura si trovarono ad esercitare un particolare filone di patriottismo in quanto ravvisavano nell'unità politica dell'Italia una condizione essenziale per lo sviluppo delle conoscenze e della pratica scientifica applicata all'ammodernamento e allo sviluppo della società italiana. Il tutto con beneficio reciproco per la Patria come per la Scienza. E infatti autori di benefici per la nuova Patria furono gli scienziati e patrioti a tutto tondo che ritroviamo tra i partecipanti alle riunioni e alla vita della SIPS: tra cui uomini come Quintino Sella, Leopoldo Pilla, Terenzio Mamiani.

Dopo la proclamazione del Regno d'Italia (legge 17 marzo 1861, n. 4671) la situazione cambia: risultano oggettivamente rimossi gli ostacoli alla costituzione di una entità associativa. Per cui, non più di sei mesi dopo da quella data, il professore Cosimo Ridolfi, agronomo, promuove e presiede un Congresso straordinario in Firenze (30 sett. - 8 ott. 1861) nel corso del quale, il 30 settembre, viene proposto di creare una Associazione (o società) dei Congressi.

La proposta derivava dalla considerazione che la partecipazione degli studiosi, dal 1839 al 1847, aveva registrato un costante crescendo: dai 421 partecipanti alla Prima Riunione si era arrivati a contare, nelle varie edizioni, 8.200 soci effettivi e partecipanti ed oltre 8.000 "amatori", anch'essi presenti in parte ai lavori.

Costituire una Società: ma perché non costituire un'Accademia? La differenza è bene espressa dal fisico professore Carlo Matteucci nella sua Relazione al Congresso il quale, il 5 ottobre 1861, illustrando il lavoro della Commissione incaricata di pre-

disporre il Regolamento, da lui presieduta così si esprime: «I Congressi scientifici nazionali non sono e non possono essere accademie propriamente dette né per la loro origine, né per il modo con cui si mantengono, né per la natura delle loro attribuzioni. Le Accademie sono corpi ristretti nei quali non si entra che dietro prove incontrastabili di una capacità speciale. Sono una sede di ricompensa e di onorificenza ai cultori più distinti delle scienze. Eccitano l'emulazione, e formano una delle glorie le più pure, le più apprezzate da ogni popolo civile. Invece le associazioni scientifiche nazionali, destinate a fiorire sopra tutto in quei Paesi ove la scienza non è raccolta in un centro solo, ma trovasi invece distribuita e diffusa, valgono ... a stringere amichevoli relazioni fra i cultori delle scienze che vivono separati; spandono per esse nel pubblico l'amore e il rispetto; richiamano l'attenzione del popolo sulle scoperte e sulle giornaliere applicazioni di esse. Le associazioni scientifiche sono, in una parola, per le scienze e per le lettere una di quelle instituzioni impresse dello spirito democratico dei nostri tempi, e da cui convien trarre il miglior partito possibile e toglierne i pericoli e le esagerazioni. La scienza severa è naturalmente solitaria, respinge le dimostrazioni clamorose e vuole essere giudicata da un pubblico ristretto e competente: i Congressi scientifici ne diffondono il gusto in quelle classi della società che non possono passare tutto il loro tempo sui banchi delle scuole e delle biblioteche. Abbiamo creduto che questa associazione dovesse dare al paese l'esempio di un istituto che sa conservarsi e crescere indipendentemente dall'ingerenza e dal soccorso governativo; e da questo pensiero ha origine l'innovazione più importante, e secondo noi la più salutare, che vi proponiamo; quella cioè della tassa d'iscrizione che i membri dell'associazione scientifica italiana dovranno pagare per essere ammessi al Congresso⁷».

La denominazione definitiva della associazione vede la luce l'anno dopo, a Siena, nel corso della X Riunione dei Congressi (14-18 settembre 1862), presieduta dal filosofo Terenzio Mamiani della Rovere. Nel corso dell'evento il chimico Stanislao Cannizzaro propone che all'Associazione prefigurata nel "Regolamento Matteucci" venisse attribuito il nome di Società Italiana *pel* Progresso delle Scienze.

Nel decennio 1862-1972, significativamente, i Congressi si interrompono. Essendosi completato, infatti, il processo di unificazione della Nazione, le motivazioni politiche di essi risultavano appagate, nel mentre le motivazioni scientifiche aleggiavano in attesa di veder concretizzata la nuova organizzazione degli atenei, dei laboratori, delle strutture tecniche del neonato Regno.

Poco dopo la proclamazione di Roma Capitale, nel 1873 nel corso di una Seduta in Campidoglio - sempre su iniziativa di Mamiani - che, coerentemente con sue motivazioni d'ordine filosofico - proponeva una riforma e un rilancio dei Congressi basati sull'unitarietà della scienza - venne approvato il testo di un "Progetto di ricostituzione dei congressi generali degli scienziati" per

mezzo di una istituzione permanente (1873), vale a dire, della Associazione prefigurata a Siena nel 1862 denominata "Società Italiana pel Progresso delle Scienze".

Cosicché su impulso, ancora una volta, del Mamiani, venne indetto il "XII Congresso della Società Italiana per il Progresso delle Scienze" (Palermo, 29 ago. - 7 sett. 1875) in cui venne approvato il (Primo) Regolamento della Società Italiana per il Progresso delle Scienze con sede sociale in Roma⁸.

Nel trentennio successivo la Società rimase quiescente in quanto i principali e storici obiettivi - Unità d'Italia e Congressi itineranti - si erano esauriti.

Si arrivò così al 1906, 15 settembre, allorché, a Milano, nel corso dell'adunanza generale della Società Italiana di Scienze Naturali si ravvisò la necessità di dotare la scienza italiana di un adeguato strumento scientifico/associativo a carattere nazionale. La discussione condusse così ad un risultato concreto: "si approvò all'unanimità la ricostituzione della SIPS9", il che avvenne per iniziativa di Vito Volterra, Arturo Issel e Pietro Romualdo Pirotta.

Conseguentemente, nel settembre 1907, a Parma si tenne il Primo congresso della ricostituita Società nel corso del quale venne approvato il nuovo statuto¹⁰.

Per cui, con il Regio decreto n. DXXII del 15 ottobre 1908, la Società italiana per il progresso delle scienze, sede in Roma, viene eretta in ente morale nazionale¹¹.

Dopo il 1908 in aggiunta ai Congressi, la SIPS si dedica anche alla diffusione - associata alla promozione - delle scienze¹². Essa si impegnò inoltre nell'organizzazione di campagne di ricerche geologiche (Albania).

Nel corso degli anni ha promosso ed erogato sussidi ad Istituti, per buona parte, da essa stessa creati: il Comitato Talassografico Italiano, il Comitato Glaceologico Italiano, l'Istituto di Studi per l'Alto Adige (vedi pubblicazioni dal 1923 al 1938), l'Istituto di Studi Legislativi, la Fondazione Scialoja per gli Studi Giuridici. Ha inoltre attivamente operato in favore nell'Istituto di Studi Adriatici, dell'Istituto di

⁷ Vd. Relazione relativa al progetto di riforma del Regolamento generale dei congressi degli scienziati italiani del professore Matteucci a nome della Commissione nominata dal Congresso scientifico di Firenze del 1861, Tipografia Eredi Botta, Torino, 1861.

⁸ Vd. Atti del duodecimo congresso degli scienziati italiani: tenuto a Palermo nel settembre 1875, Roma, Tip. dell'Opinione, 1879.

⁹ Vd. Atti del Congresso dei Naturalisti Italiani - Promosso dalla Società Italiana di Scienze Naturali, Part. 1, Milano, 15-19 Settembre 1906 (1907), Tipografia degli Operai, Publisher. Kessinger Legacy Reprints.

¹⁰ Vd. Società Italiana per il Progresso delle Scienze e il Congresso di Parma, Ed. presso la «Rivista Italiana di Sociologia», Scansano Tipografia editrice degli Olmi, Roma, 1907.

¹¹ Ad esso seguirono: R.D. 11 maggio 1931, n. 640 (G.U. 17 giugno 1931, n. 138); R.D.16 ottobre 1934 - XII, n. 2206 (G.U. 28 gennaio 1935, n. 23); D. L. gt. 26 aprile 1946, n. 457 (G.U. edizione speciale - 10 giugno 1946, n. 1339).

¹² Tra le pubblicazioni scientifiche, vd. *Opere Matematiche del marchese Giulio De Toschi di Fagnano*, pubblicate sotto gli auspici della Società italiana per il progresso delle scienze, dai Soci V. Volterra, G. Loria e D. Gambioli, Milano 1911.

Studi Italiani di Praga, dell'Istituto di Paleontologia Umana di Firenze, dell'Istituto per le Applicazioni del Calcolo del CNR e per la realizzazione della Bibliografia italiana. Ha amministrato, infine, tre fondazioni rette da appositi statuti: la Fondazione Marconi, la Fondazione Giacomo Ciamician per lavori di Chimica pura ed applicata, e la Fondazione Massimo Piccinini.

Ouali sono i caratteri distintivi dei Congressi e della SIPS? Premesso che essi, come riportato prima, hanno costantemente escluso di riferirsi al modello delle accademie, se ci si sofferma sul loro andamento complessivo e sulla struttura organizzativa, tra Congressi e Società emerge un unico e costante filo conduttore. Vale a dire che Congressi e Società evidenziano una costante unità nei caratteri costitutivi: cioè nella "ragione sociale" e nel "vincolo associativo"; nella "qualificazione dei soggetti"; nei "programmi di azione" tutti rivolti alla promozione e diffusione delle conoscenze e delle applicazioni scientifiche; nell'"impianto giuridico fondato su statuto e regolamento"; nella composizione degli "organi di direzione" incentrati sul ruolo e compiti del presidente; nei "criteri di formazione del bilancio e gestione del patrimonio" costante mente improntato all'autofinanziamento; nella continuità, infine, dei caratteri formali adottati in forza del "riconoscimento giuridico" da parte dello Stato.

Riguardo alla continuità della natura associativa delle attività svolte dai Congressi, va sottolineato che essi non si esauriscono nella

realizzazione del singolo evento e quindi non hanno carattere episodico e puntuale. Infatti, secondo Regolamento¹³, al termine dei lavori del singolo Congresso, si provvedeva alla elezione del Presidente generale incaricato di realizzare l'evento successivo. Egli aveva il compito di intrattenere i rapporti ed accordi con la municipalità, e con l'autorità governativa, della città candidata ad ospitare il nuovo evento. Correlativamente egli doveva - supportato da due Assessori - provvedere a tutte le altre incombenze amministrative riguardanti il sodalizio, e in particolare alla pubblicazione degli atti del Congresso precedente e al loro deposito presso l'Archivio sociale costituito - come da regolamento (cit., artt. XIII e XIV) - presso l'I.R. Museo di Fisica e Storia naturale di Firenze, il cui direttore assumeva anche il compito di Conservatore di tali atti.

In sostanza l'Assemblea dei naturalisti, fin dalla sua prima riunione provvide a definire e regolamentare tutti i profili organizzativi di una "società scientifica": una società che - nell'impossibilità di godere di "riconoscimento giuridico" e quindi di definire una sede stabile - risultava costretta a stabilire la propria sede di volta in volta in corrispondenza del luogo di residenza del Presidente incaricato.

Riguardo alla "ragione sociale", va osservato che essa è rimasta invariata dal 1839 ad oggi e che, non appena ne risultò consentita la formalizzazione giuridica - vale a dire dal 1862 - anche la sua denominazione formale è -nella sostanza - rimasta invariata. Infatti il Regolamento del 1839

¹³ Regolamento generale per le annuali Riunioni Italiane dei Cultori delle Scienze naturali, Approvato nell'Adunanza Generale del 15 ottobre 1839, in *Atti della Prima Riunione degli scienziati italiani tenuta in Pisa nell'ottobre del 1839*, Seconda edizione, Tipografia Nistri, Pisa, 1840, p. LII.

così recita: «Art.1 - Il fine delle Riunioni dei cultori delle scienze naturali si è di giovare ai progressi e alla diffusione di tali scienze e delle loro utili applicazioni». A sua volta il Regolamento di Firenze (1861)¹⁴ così prevede: «Art.1 - I Congressi scientifici italiani hanno per scopo di contribuire allo avanzamento, ed alla diffusione delle scienze!. Correlativamente il Regolamento di Palermo 1875 (cit.)

così riporta: «Art.1 - La Società Italiana pel Progresso delle Scienze ..., ha per scopo di offrire ... Un mezzo naturale e scambievole di collegamento, di promuovere in modo più stabile e più efficace, di quanto non lo potessero fare i Congressi passati, i convegni tra i varii cultori di scienze; di far servire tali convegni non solo a provocare relazioni personali e fuggevoli scambi di idee, ma altresì a collegare durevolmente i loro sforzi intorno a intendimenti comuni ed a tener vivo l'interesse per l'alta coltura scientifica nel pubblico, sollecitando a cooperare a sì nobile fine».

Il dettato dello Statuto della Società approvato a Milano il 15 settembre 1906 (cit.), nel corso dell'Adunanza della Società italiana di scienze naturali, riporta: «È istituita la Società Italiana per il progresso delle scienze, costituita in corpo morale, con sede a Roma. Essa ha per iscopo di promuovere il progresso, la coordinazione e la diffusione delle scienze e delle loro applicazioni, e di stabilire rapporti fra i cultori di esse».

L'unicità della "ragione sociale" e quindi la continuità storica e operatività associativa tra Congressi e SIPS dal 1839 al 1875 è dimostrata, tra l'altro, dal fatto che nel 1875 a Palermo si celebra non solo la XII Riunione degli Scienziati ma anche il XII Congres-

so della Società Italiana per il Progresso delle Scienze (29 ago.- 7 sett. 1875). La prosecuzione della numerazione dei Congressi (XII Congresso) sta infatti a conferma della identità e continuità storica tra Riunioni e Società SIPS.

La continuità associativa dal 1875 al 1906 - nonostante la protratta interruzione dei Congressi - è confermata dal fatto che nel 1939 viene celebrato il 1° Centenario di attività sociale anche con la pubblicazione di un'opera SIPS (in sette volumi) dal titolo *Un secolo di progresso scientifico italiano (1839-1939)*. Per l'occasione viene altresì coniata una medaglia celebrativa. Né - ai fini dell'attività istituzionale - può ritenersi rilevante la rinumerazione dei Congressi a partire dal 1906, in quanto essa fu determinata essenzialmente dal fatto che l'assetto delle discipline - e quindi delle Sezioni dei Congressi – nel frattempo era mutata.

Riferendoci, infine, alla tipologia dei soci e alla sua continuità dal periodo dei Congressi alle fasi della SIPS, va considerato che tale tipologia - sotto il profilo dei requisiti culturali e professionali richiesti per l'accettazione nella Società - è rimasta invariata. I Congressi e la SIPS furono aperti, fin dall'iniziale 1839, non solo a docenti universitari e a membri di accademie, ma anche a cultori delle più svariate discipline - purché praticate con metodo scientifico - a professionisti e a quadri tecnici anche delle forze armate e dei servizi nazionali. La coltivazione del metodo scientifico fu infatti elemento distintivo ed essenziale per l'iscrizione, in quanto esso comportava - sul piano associativo - da sempre, la reiezione di implicazioni ideologiche o politiche e il perseguimento della cultura dell'indipendenza - anche dal punto di vista finanziario - dall'autorità o dalla protezione dei sovrani e potentati dell'epoca e di oggi.

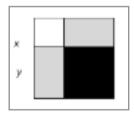
¹⁴ Regolamento Generale pei Congressi degli Scienziati italiani, adottato nelle adunanze straordinarie tenute in Firenze nel dì 5, 7 e 8 Ottobre 1861, p.23, in *Congresso straordinario degli Scienziati Italiani convocati in Firenze nell'autunno del MDCCCLXI*, dalla Tipografia Galileana, Firenze, 1861.

ARCHEOMATEMATICA - il metodo mesopotamico

di GIANLUCA CIAMPI

i recente si è venuto a sapere, da un ricercatore australiano che analizzava delle tavolette in cuneiforme, che gli antichi popoli mesopotamici già conoscevano il Teorema di Pitagora. Per chi si interessa di archeomatematica la notizia in se non è poi del tutto nuova. Nell'era precedente ad Internet Otto Neugebauer ne aveva largamente parlato nel suo Le scienze esatte dell'Antichità (analizzando la Tavola Plimpton 322 in cuneiforme, che ha circa 4.000 anni) ripreso poi nella Storia della matematica da Boyer. L'approccio dei mesopotamici aveva però delle leggere differenze dall'approccio euclideo a cui siamo abituati. Vedremo che riappropriandoci di tale approccio avremo uno strumento, giudicato obsoleto, che ci permetterà delle scorciatoie interessanti per risolvere antiche questioni sui numeri.

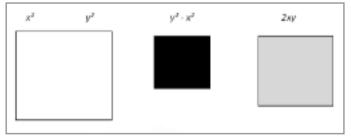
Iniziamo con qualcosa di apparentemente banale e piuttosto semplice. In antichità si usavano dei sassolini per contare e fare le prime operazioni di matematica, *calcoli*. Si rappresentavano quelli che i pitagorici chiamavano *numeri quadrati* o *numeri rettangolari* attraverso delle forme, che ai nostri occhi potrebbero sembrare geometriche (ma era una sorta di pre algebra, molto elementare), poi ridotte in tabelline. Tra queste, una fondamentale era la visualizzazione di quello che noi oggi chiameremmo quadrato del binomio, che attraverso una serie di passaggi, avvenuta probabilmente nei secoli, ci ha portato prima all'aritmogeometria e poi alla geometria euclidea.

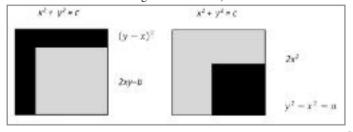

Il nostro intento e di portare a una lettura profonda dei metodi di calcolo antichi, non solo interessanti per un'indagine di storia della matematica e, quindi, anche storia del pensiero umano, ma anche poi per dei possibili impieghi nella teoria dei numeri, per fare ciò dobbiamo partire dalla base.

Come possiamo leggere il pre algebra mesopotamico, poi usato da Diofanto?

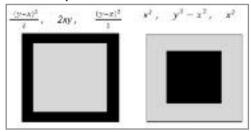
Si parte, per intenderci, da quella che noi oggi chiameremmo algebra e scriveremmo così: $(x^2 + y^2)^2 = (y^2 - x^2)^2 + (2xy)^2, y^4 + 2x^2y^2 + x^4 = y^4 - 4x^2y^2$, tale che $a = y^2 - x^2$, b = 2xy, $c = x^2 + y^2$, tale che $c^2 = x^2 - y^2$, tale che $c^2 = a^2 - b^2$. Solo che allora non esisteva la nostra algebra, né la geometria euclidea.

Possiamo ipotizzare dei passaggi (basati su documentazioni storiche) in una prima fase A) diremmo di algebra visualizzata, in una seconda B) di aritmogeometria primitiva a una terza C) di aritmogeometria quasi geometria che hanno portato al senso dell'equazione mostrata:


A) Visualizziamo il quadrato di un binomio x y (es: 1 e 2) Avremo 2 numeri quadrati e due rettangolari (eguali) x^2 , y^2 , 2xy. Ma valgono solo come numeri.

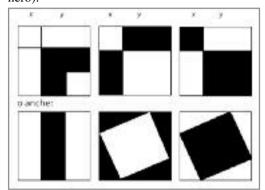

Tutti nuovi numeri desumibili da A attraverso: 1) tre moltiplicazioni (le aree numeriche del quadrato del binomio mesopotamico) e 2) due addizioni e una sottrazione.

1) x per x, y per y e x per y, proprio nel quadrato del binomio. Poi (2) si sommano i quadrati $(x^2 + y^2)$, se ne fa anche la differenza $(y^2 - x^2)$ (e si sommano i due rettangoli (2xy).

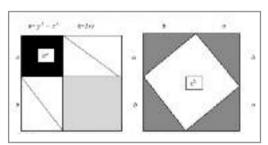

Successivamente B1) si fa il quadrato di: $x^2 + y^2$, poi di y^2 - e infine di 2xy.

ci si rende conto con alcuni gnomoni che B2):

anche con "quadro e cornice":



Teoricamente in questa prima fase poteva ancora non esserci il triangolo rettangolo a, b, c, ma, in tutti i casi queste figure aritmo-


Е

geometriche ci dicono che $(x^2 + y^2)^2 = (y^2 - x^2)^2 + (2xy)^2$.

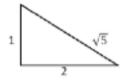
Di fatto queste tre forme di algebra visualizzata bastavano, perché funzionavano (e ancora funzionano) per qualsiasi numero (a quei tempi i numeri razionali), ma in quel pre-algebra pratico venivano visualizzate, partendo sempre dal quadrato del binomio (ora vediamo: a, b e c in nero):

Il che ci porterà, nel tempo, attraverso una rappresentazione C) non più del quadrato del binomio iniziale, ma di un binomio da esso scaturito $(a = y^2 - x^2 e b = 2xy)$, ai primordi della geometria con $c^2 = a^2 + b^2$, come possiamo vedere attraverso la dimostrazione che si ritiene più antica del Teorema di Pitagora, riportata anche da Euclide, quella dell'equivalenza delle aree, che sembra procedere su una via (a noi più consona) in parte diversa dalla precedente.

Che in fin dei conti rappresenta il ponte, per il pensiero antico (oggi diremmo di radice platonica), tra i numeri sul piano archetipale (che abbiamo rappresentato con x y) e quelli sul piano materiale, di misura (rappresentati con a, b e c); numeri di qualità e numeri di quantità (più cari ad Aristotele), nelle antiche filosofie. Oggi potremmo dire un ponte tra algebra e geometria.

Abbiamo quindi, una prima fase di calcolo visualizzato, diremmo pre-algebrico, e successivamente una seconda fase pre-geometrica (che porterà poi alla geometria euclidea). Mostreremo la connessione tra queste due strade apparentemente già lontane e la loro utilità andando a visitare gli albori dell'algebra orientale e delle forme di matematica diofantea occidentale. È chiaro che se prendiamo a caso due numeri (uno

pari e l'altro dispari, non multipli tra loro) e li chiamiamo a e b, non è affatto detto che facciano parte di una stessa terna pitagorica, ma se li chiamiamo x e y e applichiamo il metodo mesopotamico, costruiremo sempre una terna di interi.

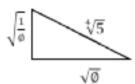

Cercheremo ora di mostrare una semplice applicazione del metodo, interessante per alcune correlazioni numeriche. Evidentemente come da x, y possiamo costruire una terna pitagorica a, b, c, si può procedere facilmente al ritroso partendo da a, b e c noti, ad es.:

$$x = \frac{\sqrt{c-a}}{2}$$
 θ $y = \frac{\sqrt{c+a}}{2}$

Infatti se partiamo dalla classica terna 3, 4, 5 avremo:

$$x = \frac{\sqrt{5-3}}{2} = 1$$
 e $y = \frac{\sqrt{5+3}}{2} = 2$

Che a loro volta se usati come a e b ci danno:



proviamo a cercare le x y di questa terna troviamo che:

$$x = \frac{\sqrt{\sqrt{5}-1}}{2} = \sqrt{\frac{1}{6}} \qquad \qquad 6 \qquad y = \frac{\sqrt{\sqrt{5}+1}}{2} = \sqrt{6}$$

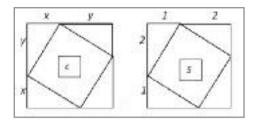
infatti
$$x^2 + y^2 = \frac{1}{6} + \emptyset = \sqrt{5}$$

Che a loro volta se usati come a e b ci danno:

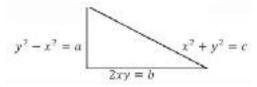
Correlazioni tra (1)la serie di Fibonacci e (2) il metodo mesopotamico per costruire terne pitagoriche:

1) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 ...
2)
$$a = y^2 - x^2 = (x + y)(y - x), b = 2xy, c = x^2 - y^2, c^2 = a^2 + b^2 = (x^2 + y^2)$$

Generalmente se x numero pari/dispari, y numero dispari/pari, y>y e non multipli tra loro.

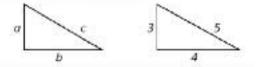

Sappiamo da Fermat che i numeri ipotenusa sono della serie 4n+1, nelle terne primarie, (o anche il prodotto tra più numeri primi sempre della serie 4n+1); quando in una terna c si esprime in un numero pari, saremo di fronte ad una terna secondaria, in genere del gruppo p(4n+1)). Evidenziamo questi numeri (ipotenusa) nella serie di Fibonacci:

(1) 1 2 3 **5** 8 **13** 21 **34** 55 **89** 144 **233** 377 **610** 987 **1597** ...


Mentre sappiamo che da 2): $x^2 + y^2 = c$; partiamo sempre da figure algebriche di antica tradizione mesopotamica, quindi c appare ora, nella figura che segue in grafica, come un quadrato (appunto il quadrato dell'ipotenusa), in geometria euclidea sarebbe un radicale, come ipotenusa classico (osservare le due prossime figure).

A)
$$1^2 + 2^2 = 5$$
, B) $2^2 + 3^2 = 13$, C) $3^2 + 5^2 = 34$, D) $5^2 + 8^2 = 89$, E) $8^2 + 13^2 = 233$, F) $13^2 + 21^2 = 610$, G) $21^2 + 34^2 = 1597$.

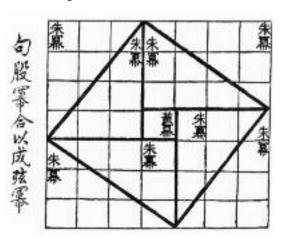
Esempi di valutazione algebrica:


Che poi passando ad a, b e c:

Le terne pitagoriche (primarie e secondarie) costruibili dalla serie di Fibonacci:

$x=y^{\perp}-x^{\perp}=(x+y)(y-z).$	$\beta = 2\pi j$, ϵ	$= x^{2} + y^{3}$
A(n) = (2+2)(2-1) = 2n1 = 1.	b = 2(1)(2) = 4.	c=5.
$F(\alpha=12+3)(1-2)=547=8\;,$	1=2(2)(3)=1%	$\epsilon = 1.2$,
C(n - (3 + 2)(3 - 3) - 4n2 + 16.	A = 2(3)(5) = 38.	$\tau=34,$
$0) = -(5 + 6)(6 - 5) = 13 \cdot 3 = 32,$	h = 2(5)(3) = 36.	c = 193
E(a) = (0 + 13)(13 - 0) = 21/5 = 105.	$\alpha = 2(0)(13) = 296$	c = 233
$F\rangle_{41} = (12 + 21)(21 - 12) = 34/\Omega = 272$	A=2(13)(21)=50	6. 4 = 610
$\mathcal{G}(a = (21 + 34)(34 + 24) = 55(13 = 71)$	h = 2(21)(34) = 6	(20, 1 = 1597
10 110		

Che adesso si possono rappresentare nella classica geometria:

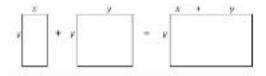

Quindi dalla serie di Fibonacci per trovare b (cateto di ordine pari) basta moltiplicare due numeri tra loro attigui sulla serie (chiamandoli x, y) per 2; mentre per trovare a (cateto di ordine dispari), si moltiplicano la loro somma e la loro differenza (li abbiamo proprio attigui a loro stessi: y-x e y+x), mentre c (ipotenusa) è già nella serie e va a coincidere sempre con la somma di due numeri (x,y) quadrati, che cambiano di volta in volta, adesso osserviamo: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 ...

```
100-1-1-1-10-11-1-1-3, 1-20-4, 1-4---3-2r+1
F(a = y^3 - x^3 = (x + y)(y - x) = 3, \quad Y = 2xy = 12, \quad x^3 + y^3 = x = 13 + 2y + 2x
m2 e m5
C(y_0 = y^2 - x^2 = (y + y)(y - x) = 16, \hat{y} = 2xy = 30, \hat{x}^2 + y^2 = y = 34 = 5y + 3x
(f)_{11} = y^2 - y^2 = (y - y)(y - y) = 20, \quad 3 = 2yy = 20, \quad y^2 + y^2 = y = 100 = 3y + 5x
f(y) = y^2 - x^2 = (y + y)(y - z) = 105, \quad y = 2yy - 208, \quad x^2 + y^2 = c = 233 + 85y + 8x
xy_1 = y^2 - x^2 = (x + y)(y - x) = 202, y = 2xy = 54x, y^2 - y^2 = y = 640 = 24y = 24x
and a visio
(2)(x+y^2+y^2+(x+y)(y-x)+7)5, \quad b=2xy=2456, \quad a^2+y^2=x=1597=34y+214
            AL CH 12 1 5 8 13 21 34 55 88 144 233 177 618 587 1597 .
               YE S P STY STOPPED + 12
            91 (11 1 2 F 5 8 B) 21 34 55 89 144 135 177 617 587 1587 ...
           C) (10 t 1 2 2 5 6 48 10 46 55 89 166 222 277 656 687 6565 _
                    war a proof only being herbyard a pl
            0[ (1] 1 2 3 5 6 13 21 34 55 89 344 239 377 612 587 1507 ...
                     your yeary and panish busy busy busy busy of 4 y
            C. (1) 1. 2 5 2 4 24 71 54 50 59 144 285 377 631 987 1997
                       wa z g ney neby Jneby knelly knelly Boelken' e y
            E 01 1 2 1 1 8 D 21 34 55 89 164 281 377
                                                                   600 987 1997
                         y a w w etc etcy dedicionin berdy Serbly Metalymet a pe
            0) (0) 1 2 3 5 8 15 21 34 55 49 144
                          wa a y any may have during he do denily then it Marathan 2 + y2
```

ad infinitum.

Ora faremo un viaggio matematico nello spazio e nel tempo partendo dall'assunto mesopotamico che per il Teorema di Pitagora traduciamo in algebra come visto nella I parte: $a = y^2 - x^2$, b = 2xy, $c = x^2 + y^2$. Abbiamo due ragioni per percorrere questa strada: la prima di mostrare le possibili applicazioni di questo metodo tra pre algebra e pre geometria, la seconda per renderlo più famigliare per poi poter affrontare la III parte, più impegnativa. Allo stesso tempo, ipotizziamo un filo rosso che unisce Oriente ed Occidente, attraverso ragionamenti sul numero anche servendoci di figure non propriamente geometriche in senso stretto, sulla base di uno stesso metodo, di origine appunto mesopotamica.

Secondo gli storici, il Chou Pei, un antico testo matematico cinese che si stima più o meno coevo al periodo pitagorico, oltre ad essere un trattato di astronomia ci dice che i cinesi conoscevano il Teorema di Pitagora.


Vedremo poi che la tassellazione di questa figura potrebbe implicare non solo una dimostrazione del Teorema di Pitagora indubbiamente vicina a quella già vista, nella I parte, sull'equivalenza delle aree, ma anche qualcosa che ci sarà utile nel proseguo e a cui torneremo. Qualcosa di simile c'è anche nella matematica indiana, sicuramente con Bahaskara (dopo il 1100 d.C).

Ma ancora prima abbiamo un'equazione di secondo grado (probabilmente la prima), molto simile alle nostre con Brahmagupta: $a\lambda^2 - b\lambda = 0$ (ca. 628 d.c. *Brahma Sputha Siddhanta*, India): Proveremo a leggerla partendo dallo strumento del quadrato del binomio (x y) visualizzato, che vedremo dopo la seguente premessa.

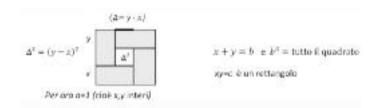
Partiamo da due equazioni semplicissime, A e B: A) $x^2 + xy = x (x + y)$ che anticamente veniva così visualizzata (non esisteva ancora l'algebra e le figure servivano principalmente per contare, per calcoli, tant'è che si usavano anche le pietruzze, solo più tardi avrebbero avuto un senso aritmogeometrico e quindi, poi, geometrico in senso stretto):

Non dobbiamo pensarle come superfici in senso geometrico perché x è un numero qualsiasi (così y), possono essere kg, oggetti, ecc. o solo numeri. Se x sono chili, non è che x^2 sono kg², (se usassimo i metri ci potremmo anche confondere, ma è la stessa cosa) pensiamoli solo come numeri, anche per questo spesso si usava la tassellazione (algebra figurata).

Stesso discorso per quest'altra: B) $xy + y^2 = y(x + y)$

Quindi passiamo a osservare il quadrato del binomio visualizzato (tipico nella prima matematica babilonese, ma conservatosi poi sia in occidente tra i pitagorici, che in oriente, Persia, India, Cina) anche esso da intendersi, come strumento di calcolo, una sorta di tabellina a due numeri, oggi diremmo come un pre algebra visualizzato.

Basta farci caso, abbiamo insieme sia: $x^2 + xy$, che: $xy + y^2$



A questo punto se chiamiamo x + y = b e xy = c (e inoltre se c'è un denominatore, per x y, allora denominatore comune = a), abbiamo la nota: $a\lambda^2 - b\lambda = 0$ (se usiamo x y interi allora a = 1: $\lambda^2 - b\lambda + c = 0$)

In questo senso si può leggere il quadrato del discriminante come area numerica:

Ora, che cosa vuol dire $\Delta = \sqrt{h^2 - 4ac}$?

Ai tempi dell'apprendimento scolastico scoprivamo il discriminante e se l'equazione era buona ci dava sempre, come per magia, un numero quadrato perfetto. Osservando il quadrato del binomio visualizzato (con qualche piccolo accorgimento) possiamo comprendere Δ .

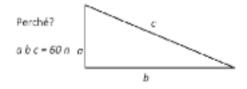
Quando noi facciamo b^2 (esprimendo tutta l'area del quadrato del binomio $x^2 + 2xy + y^2$) meno 4ac, $(a=1 \ per \ x \ y \ interi)$ semplifichiamo in 4c (che non sono altro che i 4 rettangoli in figura, quindi -4xy), troviamo il quadrato del discriminate, (il quadratino centrale in figura = $x^2 + 2xy + y^2$) e quindi estraendo la radici troviamo $\Delta = y$ -x (vedi prima equazione che segue) che poi sommato e sottratto a b (che sappiamo essere x+y) e diviso 2, ci darà per forza y ed x (vedi sevedi vedi vedi

Quindi, la soluzione:

$$\begin{array}{l} \Delta = \sqrt{b^2 - 4\alpha c} = \sqrt{(x+y)^2 - 4\alpha y} = \sqrt{(y-x)^2} = y-x\\ \lambda = \frac{b\pm b}{2\alpha} = \frac{x-y\pm b-b}{2} = x \text{ o } y, \end{array}$$

cioè i due numeri del binomio.

In pratica quando scriviamo un equazione di II grado di questo tipo, che ci dà due soluzioni, è come se scrivessimo contemporaneamente e alternativamente in una sola equazione: A) x^2 - (x + y)x + xy = 0 e B) y^2 - (x + y)y = 0, in sintesi: $a\lambda^2$ - $b\lambda$ + c = 0


Quello che oggi rappresentiamo con: $ax^2 - bx + c = 0$, che noi normalmente risolvendo, avremo, x_1 (per x del quadrato del binomio) e y_2 (per y del quadrato del binomio). Apparentemente ciò funziona solo per numeri interi positivi o al massimo frazioni (i numeri che effettivamente erano in uso nell'antichità), ma a ben vedere funziona sempre, anche con i numeri negativi (o altri): se negativi entrambi, Δ sarà lo stesso, viceversa se o x o y negativo, allora il Δ e b si invertiranno.

Sappiamo dagli storici della matematica che nell'antichità occidentale (Egitto e Grecia antichi) il φ fosse noto e che Fibonacci nel 1200, con le conoscenze della matematica araba e con la sua

serie lo poteva raggiungere con approssimazioni sempre più vicine. Poteva il Pisano anche conoscere l'antico metodo babilonese? Probabilmente sì. Abbiamo già visto (I parte) la relazione nella serie di Fibonacci con il metodo mesopotamico. D'altronde il Pisano studiò alla fine dell'undicesimo secolo da maestri arabi (in Algeria), che avevano già tre secoli di esperienze. A Baghdad già nell'ottavo secolo erano stati tradotti Apollonio, Archimede ed Euclide, poi anche i matematici indiani, qui infatti sorse la grande opera del matematico persiano Muhammad ibn Musa al-Khwarizmi (780-850 d.C.), e, nel decimo secolo fu tradotto lo stesso Diofanto; ma va anche detto che Baghdad era pur sempre terra di origine mesopotamica.

Comunque dobbiamo attendere altri 400 anni per ritrovare, questa volta in Francia, il metodo babilonese. A Parigi nella prima metà del 1600 esisteva un cenacolo culturale *Academia Parisiensis*, di intellettuali, in special modo matematici, che ruotava intorno la persona di Padre Mersenne, che intratteneva rapporti, il più epistolari, con Descartes, Pascal, Fermat, Galilei, Torricelli, Hobbes, Huygens ed altri tra filosofi, fisici, matematici e musicisti. Tra questi vi era un matematico dilettante parigino Bernard Frenicle de Bessy.

Frenicle ci dice che in qualsiasi terna pitagorica o triangolo rettangolo di interi, il prodotto della terna o se preferiamo dei tre segmenti che compongono il TR, è sempre un multiplo di 60.

Se lo analizziamo partendo dalla geometria euclidea abbiamo molte difficoltà per risolvere il problema, ma lo stesso Euclide ci dà la chiave di accesso alla soluzione:

Euclide nel Lemma 1 alla Prop. X, 29 degli Elementi fa menzione di un'eredità probabilmente pitagorica, ma non approfondisce, tale Lemma verrà commentato da: Teone, Leonardo da Pisa (appunto), Zamberti, Tartaglia, Commandino e da alcuni arabi.

Anche se nei testi si usano altre lettere useremo *x* ed *y*, perché ci avvicineranno maggiormente all'algebra come oggi la intendiamo ed anche al metodo mesopotamico per come l'abbiamo presentato. In sintesi Euclide ci dice che in qualsiasi terna:

$$a = y^2 - x^2$$
, $b = 2xy$, $c = x^2 + y^2$
(Oggi noi sappiamo tutto ciò essere di radice

addirittura mesopotamica, da tavolette in cuneiforme di oltre 4.000 anni fa.)

Seppur Euclide non usò molto questa matematica così poco adatta alla sua geometria, Diofanto, più tardi, la incluse nel suo trattato *Arithmetica*, che, quindi, nel 1600 in Francia, Claude Gaspare Bachet, tradusse, entrando come uno dei testi fondamentali nel circolo di Padre Marsenne (va detto che gran parte degli storici della matematica suppongono che Diofanto ricevette buona parte della basi della sua aritmetica direttamente da Oriente).

D'altronde oggi possiamo vedere che $a = y^2 - x^2$, b = 2xy, $c = x^2 + y^2$ è anche una chiave per la soluzione del Teorema di Pitagora in una lettura algebrica: $c2 = a^2 + b^2$, $(x^2 + y^2)2 = (y^2 - x^2)^2 + (2xy)^2$, $y^4 + 2x^2y^2 + x^4 = y^4 - 2x^2y^2 + x^4 + 4x^2y^2$.

Ma ora vediamo come, con una matematica così antica, Frenicle abbia potuto risolvere il problema. Iniziamo col dire che anche *x* e *y* sono interi (generalmente uno pari l'altro dispari e non divisibili tra loro, altrimenti in questi casi troveremmo delle terne secondarie che non aggiungono nulla alla soluzione del problema).

In pratica Frenicle (in buoni rapporti con Fermat) ci dice che in qualsiasi terna, in *a*, *b* e *c* ci sono senz'altro i numeri 3, 4 e 5, il cui multiplo fa appunto 60. In effetti la prima delle classiche terne è proprio 3, 4, 5. Ma perché questi numeri sono sempre presenti anche nelle infinite altre terne?

Se usiamo l'antico metodo possiamo osservare la presenza del 4 è facilmente dimostrabile dato che b=2xy, dove un numero tra x o y è pari, qualsiasi pari moltiplicato per 2 è un multiplo di 4, e non c'è molto da aggiungere. (Inoltre 4 lo potevamo solo trovare in b essendo a e c sempre dispari in una terna primaria)

Ora però dobbiamo comprendere la presenza di due numeri dispari che sono 3 e 5.

Passiamo al 3, che potrà essere presente o in a o in b, mai in c - essendo c della serie 4n+1-3 invece è nella serie 4n-1, (quindi mai numero ipotenusa, vedi in seguito). Se in b (cioè nel cateto di ordine pari=2xy), y è uguale a 3 o un suo multiplo dispari, la presenza sarebbe soddisfatta, così anche se x uguale a 6 o suo multiplo. Quindi quando non è in b, né, come visto, in c, dovrebbe per forza essere presente in a. Ammettiamo che b sia x=2 e y=un numero primo (np) qualsiasi, diverso da 3. Ebbene $a=y^2-x^2$. Che però possiamo anche scrivere a=(x+y) (y-x). Sappiamo che nella serie infinite dei numeri avremo un multiplo di 3 ogni tre numeri in successione. Quindi se a un qualsiasi np (y) sommiamo e contemporaneamente sottraiamo 2 (x) avremo in uno dei due casi un multiplo di 3

Il np (o suo multilplo) si può trovare, a due unità di distanza da un multiplo di 3 (sia se np dispari 4n+1, sia se np dispari 4n-1), o nella forma np-2=3m oppure np+2=3m. Stessa cosa con x=4, 8 10, 14, 16 ecc. Quindi quando il 3 non è presente in p sarà sempre comunque presente in p, o in p, al p, o in p, o in p, per l'altro p0%.

Ci manca solo il 5 da provare; questo è vero che come multiplo è più raro del 2 e del 3, ma non così raro, inoltre può essere presente in b o in x come 10, 20 ecc. o in y come 5, 15 ecc.. Ma spesso è presente in a, ed essendo della seri 4n+1 potrebbe anche essere anche presente in c.

Sappiamo che: $a = y^2 - x^2$, e $c = x^2 + y^2$.

I numeri terminano tutti con 10 differenti cifre 0, 1, 2, 3, 4, 5,

6, 7, 8, 9.

Ma i loro quadrati no: 0, 1, 4, 9, 6, 5, 6, 9 6, 1.

Non esistono quadrati che terminano in 2, 3, 7 e 8

Se il 5 fosse presente in b=2xy (es y=5) di fatto non potrebbe essere contemporaneamente in a o in c, poiché la differenza e la somma tra una potenza pari ed una di 5 ci da sempre o 1 o 9 (come numero finale, i multipli pari di 10 non vanno considerati perché divisibili per 5). Ma non sarebbe questo il problema perché le tre esigenze 3, 4, 5 sarebbero soddisfatte. Stesso discorso se x=10. (0, 1, 4, 9, 6, 5, 6, 9, 6, 1)

Ma se non è in b, quando lo troviamo in a e quando in c?

$$5..5..5..5..p^2..5..5..5$$

Usiamo lo stesso metodo di indagine sul numero, usato precedentemente: qualsiasi quadrato di un np, più o meno il quadrato di un numero pari ci darà un multiplo di 5. Essendo $a = y^2 - x^2$ avremo il 50 % delle possibilità che il 5 (o un suo multiplo dispari) sia in a e chiaramente essendo $c = y^2 + x^2$, l'altro 50% è che il 5 (o un suo multiplo dispari) sia in c. Quando non è in a ne in c ebbene sarà presente in b. Stessa cosa quando il 3 (o un suo multiplo) non è presente in a sarà presente in b.

Un esempio in cui entrambi si trovano in questa condizione è dato dalla terna 11, 60, 61. Infatti per x=5 e y=6: $a=y^2-x^2=36-25=11$, $c=y^2+x^2=36+25=61$, quindi in a e c non abbiamo né 4, né 3, né 5, ma: b=2xy=2(5) (6) = 60.

Ma quando 3 e 5 non sono entrambi presenti in b, li troveremo in a (per 3 e per 5) o in c (solo

per il 5). Anche se non conosciamo la dimostrazione di Frenicle, possiamo supporre non fosse lontana a questo approccio, d'altronde gli strumenti del suo tempo, per un matematico dilettante, più o meno erano questi.

Quindi b sempre multiplo di 4 e quando in 2xy non vi sono né il 3 né il 5, vediamo che: (x + y) e/o (y - x) (cioè a), individua sempre un multiplo di 3, mentre $y^2 - x^2$ e/o $x^2 + y^2$ (cioè a e/o c) individuano sempre un multiplo di 5. Questa è la ragione per cui il prodotto di qualsiasi terna di interi è sempre un multiplo di 60.

Vedremo nel prossimo articolo come Fermat abbia attinto a piene mani da questa matematica, d'altronde la sua prima osservazione viene introdotta dal Porisma di Bachet, cioè:

$$a = y^2 - x^2$$
, $b = 2xy$, $c = x^2 + y^2$

Già da qui possiamo capire perché, per Fermat, i numeri ipotenusa (nelle terne primarie) sono sempre dispari della serie 4n+1: sappiamo che *x* pari e *y* dispari o viceversa, sappiamo che il quadrato di un numero pari sarà sempre un multiplo di 4, mentre un quadrato di un numero dispari, sarà sempre un 4n+1, quindi la loro somma costruirà sempre un numero (ipotenusa) 4n+1.

In effetti anche il primo algoritmo della matematica: il metodo di fattorizzazione di Fermat, potrebbe scaturire sempre da questa matematica primitiva. Fermat cercava un metodo per trovare i fattori di un numero (dispari) n, che va proprio a corrispondere ad a di una terna:

$$n = y^2 - x^2 = a$$

Chiameremo (x + y) = p e (y - x) = m, (che possiamo osservare anche nel quadrato del binomio visualizzato, sempre come algebra visualizzat

Bibliografia

Euclide, Elementi, Lemma 1 alla Prop. X, 29. (Tutte le Opere di Fabio Acerbi, Ed. Bompiani)

Diofanto, Arithmetica (versione integrale consultabile in PDF)

de Fermat P., Osservazioni su Diofanto (1670 postumo), Porisma di Bachet, premessa alla I Osservazione, Bollati Boringhieri, riedito 2006

Neugebauer O, Le scienze esatte dell'Antichità, 1952, tradotto nel 1972, Ed. Feltrinelli, 1974

Capparelli V., Il tenore di vita pitagorico ed il problema dell'Omoiosis, Ed. Zannoni & Figlio Pd., 1954

Boyer C. B., Storia della Matematica, 1968, tradotto nel 1980, Ed. Mondadori

Zellin P., Gnomon, 1999, Ed. Adelphi

Maracchia S., Storia dell'Algebra, Ed. Liguori, 2005

gamification potenza, vantaggi e rischi un'analisi paradigmatica nella società post-moderna

di TOMMASO VITTORI ANTISARI - ANTONIO SPERANZA

Scienza e Tecnologia nella Comunicazione umana: la Gamification nella società post-moderna

L'influenza di Tecnologia e Scienza è sempre stata rilevante nella Comunicazione della società umana: classici esempi il ruolo dell'invenzione della stampa nell'affermarsi della Riforma di Lutero e l'uso della radio da parte della Chiesa Cattolica. Con l'affermarsi della televisione e di internet tale influenza è divenuta dominante nei macroprocessi sociali (religione, ideologia, ...) e nella condizione storica che stiamo attualmente vivendo vanno continuamente nascendo altri strumenti che influenzano ed influenzeranno in maniera decisiva la comunicazione nella società post-moderna.

L'uso degli strumenti di comunicazione di massa ha sempre trovato motivazione dominante nella conquista del consenso: in questo contesto si collocano anche le metodologie che vanno sotto il nome di Gamification (in italiano traducibile come "ludicizzazione") che giocano un ruolo sempre più rilevante nella società post-moderna dato che in molte attività si comincia a farne uso ed in molti contesti si va comprendendo quanto rilevanti possano essere i risultati derivanti dall'uso di questo tipo di strumenti.

La Gamification è ancora in rapida evoluzione e non ancora univocamente definita; mentre in alcuni contesti è stata introdotta con rilevante successo, in altri i risultati sono stati deludenti: ragione principale che in molti contesti si è cercato di utilizzare la Gamification nei suoi termini più elementari, non tenendo conto del dettato degli esperti.

Struttura tecnico-operativa della Gamification: il game design

Per ben comprendere la natura della Gamification è assai utile, probabilmente

indispensabile, soffermarsi sull'evoluzione nel tempo della sua struttura tecnico-operativa.

Una delle prime iniziative di formalizzazione della metodologia nasce nel 2008 in un blog di B. Terill che trattava la natura ed il funzionamento del world wide web; egli teorizzò come esportare elementi ludici dalle piattaforme online in altri contesti possa stimolare notevolmente il coinvolgimento degli utenti.

Il concetto espresso da Terill venne poi riconfermato da S. Deterding nel 2011: «Gamification è il termine generico per l'uso di elementi videoludici mirati al miglioramento dell'esperienza dell'utente ed al suo coinvolgimento in contesti al di fuori del videogioco».

Questi due punti di vista, anche se non esauriscono tutte le valenze della metodologia, ne rappresentano comunque gli elementi trainanti: l'utilizzazione di dinamiche ludiche per intensificare l'interesse dell'utente verso specifiche attività (che siano Non profit oppure di lucro).

Vista la decisa influenza sugli utenti che viene prodotta dall'implementazione di elementi ludici, sono state delineate molte "linee guida" per una ottimale introduzione della Gamification in uno specifico contesto. Un esempio rilevante di linee guida è costituito dai Core-drivers di Yu-Kai-Chou - uno dei maggiori esperti nel campo di Gamification che introdusse l'argomento nel 2004, fu designato "Gamification Guru of the Year" nel 2017 dalla "Gamification Europe Conference" per via della sua teorizzazione del sistema "Octalysis", collaborò con compagnie come Google, Testla, Lego, Huawei, Uber per migliorare i loro sistemi attraverso l'introduzione di elementi ludici nei contesti lavorativi - che nel suo saggio "Actionable Gamification" propone delle

prescrizioni principali a cui attenersi (core drivers) onde ottenere un rilevante coinvolgimento dell'utente in contesti gamificati: Epic meaning and calling (call to action, sollecitazione del giocatore/utente attraverso un certo tipo di linguaggio o estetica), Development and Accomplishment (riferito allo sviluppo di un'azione di gioco con ricompensa che motiva il giocatore/utente), Empowerment of creativity and feedback (basato sulla relazione diretta tra giocatore/utente ed il suo contesto creativo), Ownership and Possession (interesse nel ruolo di badge, medaglie e trofei che ricompensano le azione positive dei giocatori), Social Influence and Relatedness (i contesti sociali che si formano tra i giocatori partecipanti a uno specifico ambiente ludico), Scarcity and impatience (presenza di un limite di tempo utile o di allocazione di risorse che attiva i giocatori), Unpredictability and Curiosity (inserimento di elementi misteriosi che possono interessare i giocatori/utenti), Loss and avoidance (ripercussioni per la perdita di risorse in un contesto ludico che impegna il giocatore).

Questi otto punti, che l'autore stesso divide in white hat and black hat core drivers, sono fondamentali per un efficace inserimento di elementi gamificati in un contesto operativo.

Esempi classici di Gamification

Individuati gli elementi basilari della Gamification, è interessante analizzare le sue diverse implementazioni per comprenderne l'effettivo potenziale.

Prima di analizzare esempi rilevanti di Gamification va sottolineato come le applicazioni di elementi ludici in diversi contesti siano molto simili al processo creativo del game designer: la metodologia si appropria di molti degli aspetti propri della cultura ludica per cercarne lo stesso risultato in altri contesti, sia Non profit che collegati ad un piano economico, facendo leva sul controllo dell'interesse da parte del soggetto partecipante. Infatti i processi della creazione ludica sono simili, se non uguali, a quelli formalizzati nella metodologia codificata, evidenziando come il processo ottimale della Gamification sia flessibile pur richiedendo un livello di competenza specifica che non

può essere dato per scontato; lo strumento non è adeguatamente implementato se viene proposto solamente attraverso un sistema di attribuzione punti oppure se viene fatta un offerta a tempo limitato: la Gamification è correttamente implementata solo se vengono rispettate molte delle linee guida contemporaneamente; quest'attività si può comparare al lavoro del game designer che, per creare un prodotto ludico che abbia un discreto successo, deve immettere tutti gli elementi che rendono interessante quello specifico gioco (in contesti di attività a scopo di lucro, si deve dare particolare attenzione ai prodotti offerti dalla concorrenza). Per comprendere il potenziale della metodologia è utile considerare alcuni esempi:

- Ribbon hero, sito creato dalla Microsoft, è uno strumento utile per l'apprendimento dell'uso delle piattaforme Microsoft come Word che, attraverso elementi interattivi legati all'attività ludica, stimola un rinforzato interesse da parte dell'utente partecipante, creando di conseguenza un maggiore interesse nella piattaforma e un rinforzato impatto sul mercato;
- Duolingo, applicazione per l'apprendimento linguistico, che è stata dichiarata dalle City University of New York (CUNY) e University of south Carolina capace, attraverso il suo metodo di lezioni corte di difficoltà crescente, di trasmettere competenze linguistiche pari ad un intero semestre universitario in sole 34 ore, rendendo la piattaforma rilevante in confronto ad altre concorrenti;
- Class dojo, sito per l'assistenza della comunicazione studenti/docenti, che, attraverso sistemi di ricompense attiva l'attenzione dello studente verso l'attività scolastica e crea una piattaforma per attirare l'attenzione degli studenti attraverso l'interazione ludica proposta dalla piattaforma.

Essendo la metodologia gamificatoria di natura diffusiva (nel senso di coinvolgere, attraverso processi di cooptazione, anche interlocutori anche solo marginalmente toccati dall'attività ludica) l'azione ludica può aiutare lo sviluppo di un'area d'influenza, in alcuni casi un "mercato": il WatERP project (progetto europeo il quale attraverso piattaforme digitali rende interessante per l'utente la problematica del consumo d'acqua, in particolare la limitazione degli sprechi idrici), l'applicazione Mango health (la quale attraverso elementi di Gamification aiuta i medici a prescrivere medicinali a specifici pazienti); entrambi i progetti evidenziano come la metodologia sia adattabile all'argomento in cui viene introdotta, rendendo quindi questioni importanti potenzialmente interessanti per chi vi partecipa.

L'auto-interazione di sistema

La Gamification sta diventando una pratica di grandi potenzialità anche per la specifica condizione in cui l'essere umano post-moderno si ritrova: con l'attuale accesso alle tecnologie di comunicazione/informazione disponibili, sopratutto tramite le diverse forme di social network, la capacità di concentrazione media, sopratutto tra i più giovani, sta calando (alcuni studi hanno determinato che il tempo di attenzione dell'essere umano tra il 2000 ed il 2015 è calato da 12 a 8.25 secondi) ed essendo la Gamification una metodologia basata sull'utilizzazione di elementi ludici l'aumento di attenzione (così come la sua diminuzione) può generare effetti retroattivi sull'ulteriore implementazione dell'attività gamificata: il sistema su cui si opera cambia non soltanto per dinamiche spontanee, ma anche in conseguenza delle specifiche azioni cui è soggetto nel processo gamificatorio. Questa connotazione autointerattiva si presenta in sistemi di grande importanza. A esempio, recenti eventi connessi con la pandemia Covid hanno evidenziato in massimo grado quanto il rapporto Scienza-Società sia critico; questo rapporto viene sempre più mediato da soggetti non accademici attraverso i quali si trasmette l'influenza, soggetti i quali, a loro volta, sono sempre più dominati dalle tecniche e dalle implementazioni scientifiche (ad esempio i sistemi di auto-apprendimento operanti sugli enormi volumi d'informazione immagazzinati). Le condizioni sociali determinate dalle strategie di comunicazione a loro volta determinano azioni retroattive sui sistemi coinvolti. Questa condizione di auto-interazione (che caratterizza i grandi sistemi complessi) è ormai tipica di tutte le grandi problematiche sociali del nostro tempo: la formazione-istruzione, l'azione politica, l'azione medica, ecc.: il sistema su cui si vuole operare viene modificato dalle azioni sviluppate e retroagisce modificando le condizioni di operatività.

I rischi

Dall'analisi che precede la Gamification emerge come uno strumento di grandi potenzialità, ma non è priva di rischi collegati soprattutto al legame che viene a determinarsi tra il giocatore e l'attività videoludica; questi rischi emergono sotto forma di malattie psico-cognitive, con elementi di dipendenza videoludica (famosa la patologia hikikomori in Giappone). Ne consegue che lo strumento Gamification deve essere propriamente valutato con una precisa anali-

si dei costi/benefici, essendo nella sua natura flessibile e ad alto impatto comunque estremamente complessa, a causa del suo collegamento con elementi del "game design" e potendo provocare danni sia nel soggetto partecipante che sull'intero campione che usufruisce della Gamification stessa.

Paradigmiticità della Gamification

L'attuale frammentazione della società in componenti ostili l'una a l'altra tende a mascherare gli elementi di analogia nelle differenti esperienze dai quali si possono trarre ammaestramenti utili: vecchi contro giovani, libri contro informatica, ecc., ecc.. Anche la Gamification viene, quindi, da un lato disaminata da soggetti su cui grava il sospetto di "addiction" e dall'altro ignorata, in quanto bollata come pratica deteriore, da soggetti spesso tecnicamente inabili ad esplorare esaurientemente la cultura moderna. In questo modo si rischia di non considerare adeguatamente i rischibenefici che la problematica, nella sua complessità, propone e, di conseguenza, non operare in maniera ottimale per la società. In tal senso l'esperienza Gamification è analoga ad altre (alcune già citate sopra) e nelle dicotomie appena evi-

denziate essa conferma la sua paradigmaticità rispetto alla problematica generale dei grandi sistemi complessi: dal citato rapporto Scienza-Società, alla dinamica della formazione-educazione, ecc.. Un'adeguata preparazione tecnica in materia di teoria dei sistemi dovrà entrare a far parte del bagaglio degli analisti oltre che degli operatori in questi contesti.

Bibliografia

A. Castelletti, A. Cominola, A. Facchini, M. Giuliani, P. Fraternali, S. Herrera, M. Melenhorst, I. Micheel, J. Novak, C. Pasini, A.E. Rizzoli, C. Rottondi, *Gamified approaches for Water Management Systems: an Overview*, (2018), ResearchGate

Y.Chou, Actionable Gamification: beyond points, badges and leaderboards, Octalysis Media, (2014), Fremont

G.B.Coiante, Gamification nell'healthcare, la nuova sfida dell'ambito sanitario, (2019), Digital Health Italia

S.Deterding et al., Gamification: Toward a Definition, (2011)

«http://gamificationresearch.org/wpcontent/uploads/2011/04/02-Deterding-Khaled-Nacke-Dixon.pdf»

V. Petruzzi, Il potere della Gamification. Usare il gioco per creare cambiamenti nei comportamenti e nelle persone,(2015,27 Agosto), Franco Angeli

B. Terill, My Coverage of Lobby of the Social Gaming Summit (2008)

«http://www.bretterrill.com/2008/06/my-coverage-of-lobby-of-social-gaming.html»

Ludografia

Class dojo, (2011), Sam Chaudhary e Liam Don, «https://classdojo.com»

Duolingo, (2011), Luis Von Ahn Antonio Navas, Vicki Cheung, Marcel Uekermann, Brendan Meeder, Hector Villafuerte e Jose Fuentes, «https://it.duolingo.com»

Ribbon hero, (2011), Sviluppato da Microsoft office labs, Windows, Pubblicato da Microsoft office

LO SGUARDO DELLA DEA condividi e collabora

di ANTONELLA LIBERATI

Ecomuseo e il suo Centro di interpretazione furono pensati, alcuni decenni fa, da Giosuè Auletta nato in Ardea nel 1954 e profondo conoscitore del testo scritto da Virgilio *Eneide*, tanto in latino, quanto nelle sue possibili traduzioni e interpretazioni.

È un Museo senza pareti, in quanto è costituito dal territorio abbracciato e guardato da sempre, come fino a oggi dalla Dea che da Monte Cavo lo osserva bordato ai lati da fiumi parte del bacino imbrifero generato dalle alture dei Colli Albani con sorgenti che alimentano fiumi, che si convogliano sfociando verso il Mare Tirreno, o direttamente in esso.

Giosuè Auletta sulla falsariga dell'Ecomuseo del Lazio Virgiliano, pretese che per l'istituzionalizzazione degli Ecomusei, ognuno di essi dovesse essere fornito di un Centro di "interpretazione". Un centro in cui gli interessati, comunque coinvolti alla

gestione conoscitiva e operativa del territorio, della sua evoluzione tanto diacronica, quanto verticale e orogenetica, oltre che la conoscenza del contratto di fiume, onde poterne pretendere la applicazione secondo legge, potessero acquisire la conoscenza oggettiva del territorio museale tanto delle sue ricchezze idriche, quanto della loro attuale quasi catastrofica gestione e uso distopico del tutto.

La guida qui recensita offre l'elenco, molto ampio e ben spiegato ma soprattutto accessibile a chiunque voglia conoscerne l'origine storica e mitica, finora sconosciuta ai più, illustrata e narrata in modo da offrire a ogni lettore, di qualsiasi età e bagaglio culturale, una nuova e atipica opportunità di percepire la voce del *Genius Loci*.

La possibilità di una conoscenza multifocale della gran parte delle innumerevoli componenti che costituiscono l'unico e straordinario corpo museale osservato fin dai suoi primordi dallo sguardo della Dea (Giunone Maxima), onde capire, riconoscere, curare, amare con consapevolezza nuova.

La guida è prova tangibile degli intenti e dell'operatività dei membri dell'Ecomuseo, riconosciuti e istituzionalizzati dalla Regione Lazio. Per cui corretta appare la presentazione fatta dalla Presidente dell'Ecomuseo del Lazio Virgiliano, dove si evidenzia l'origine Latina di quanto poi i Romani si attribuirono come loro. Traccia evidente di questa ricerca di identità iniziale dei Romani rimane nel fatto oggettivo che essi parlarono e scrissero in latino, volendosi così appropriarsi di una identità specifica: quella di un popolo sovrano e pacifico ancorché indigeno del medesimo territorio che i Romani andarono a occupare: il Lazio Virgiliano.

La guida riporta anche la testimonianza resa da Virgilio in persona di cui sembra opportuno e legittimo riportare dei versi esplicativi:

AURI SACRA FAMES

Sic placida populos in pace regebat, deterior donec paulatim ac decolor aetas et belli rabies et amor successit habend (En., lib.8. 325-327)

> Quid non mortalia pectora cogis auri sacra fames (En., lib.3, 56-57)

che spiega con una traduzione attualizzata (*La gente viveva in pace, ma poi a poco a poco i tempi cambiarono con la furia della guerra e la voglia di avere. Maledetto profitto: a cosa non spingi gli esseri umani!*) l'origine e il fine di quanto nella guida vengono chiamate "metastasi" distruttive del territorio, cancredini cementizie, per esempio.

previsioni aziendali e personali

di ROBERTO VACCA

onviene tentare di prevedere l'avvenire, anche se non è facile, e sebbene talora sia impossibile. Questi tentativi fatti per scopi personali, possono essere più efficaci se si ispirano alle procedure standard impiegate nel management aziendale. Queste mirano a produrre il programma aziendale relativo a un anno o a un quinquennio. Il bilancio di previsione - o business plan, come viene chiamato spesso- proietta previsioni su: fatturato, costo del prodotto, spese di amministrazione, progettazione, commerciali e generali, interessi bancari, tasse, profitto (o perdita), quando i clienti pagheranno le fatture, quanto e quando saranno pagati i fornitori, stipendi, salari, assicurazioni sociali, investimenti in attrezzature, ammortamenti, etc.

Il business plan viene redatto sotto forma di documenti

contabili relativi ai periodi futuri ma del tutto analoghi a quelli prodotti ogni anno (o meglio ogni mese) dalle aziende gestite bene. Questi documenti di previsione, disaggregati mese per mese, sono: Profitto e Perdite, bilancio, flusso di cassa, conto pagamenti clienti, ordini inevasi (backlog) e nuovi ordini. Al nome di ciascuno si aggiunge l'indicazione "previsione" (forecast).

In alcune aziende il *business plan* ha carattere sacro. Ormai tutti lo redigono con l'aiuto di un computer le cui procedure sono automatizzate. Si è osservato che vanno fallite più spesso delle altre le aziende che non preparano affatto il *business plan* in base alla teoria che l'avvenire è nel grembo di Giove e nessuno lo può prevedere.

Il flusso di cassa —la situazione dinamica delle entrate e uscite di contante (o equivalenti) che influenzano la situazione di tesoreria, cioè la disponibilità di soldi in cassa (o in banca)— è la variabile aziendale più criticamente influenzata dal tempo. Si chiama cash flow anche il documento (statement) in cui si registra: quanti soldi c'erano in cassa all'inizio del mese, quanti soldi entrano ed escono fisicamente durante il mese e, quindi, quanti soldi ci sono alla fine del periodo. È vitale cercare di prevedere i cash flow futuri anche nelle ipotesi di nuove politiche, nuove iniziative, ingresso in settori nuovi.

Perché? Perché il conto profitti e perdite non racconta tutta la storia: può riportare un profitto brillante ma si riferisce a somme fatturate - non incassate. Se i clienti pagano con ritardo enorme, non avremo soldi in cassa e dovremo prenderli in prestito dalla banca. Così i profitti sperati andranno, invece, tutti a pagare gli interessi. Magari non basteranno e un' azienda apparentemente prospera andrà a finire male a causa di scarsa liquidità.

Le finanze aziendali prosperano solo se si basano su:

- a. una contabilità tempestiva, accurata e fedele,
- **b.** un' amministrazione oculata,
- c. un piano dei conti ben progettato.

Sono elementi essenziali del management quanto la qualità del prodotto o del servizio fornito e la strategia commerciale.

Naturalmente le previsioni citate raramente si verificano molto esattamente ma vanno fatte ugualmente perché permettono di apprezzare quale sia la situazione dell'azienda – se si controllano ogni mese od ogni settimana gli scostamenti dei risultati effettivi da quelli previsti esplicitamente nel piano.

I manager dovrebbero garantire la loro *accountability*, cioè la responsabilità totale [e morale] di ogni azione, omissione, situazione, decisione

Come accennavo all'inizio, conviene assicurare una responsabilità simile anche verso noi stessi. Tacitamente o in modo dichiarato, ci poniamo obiettivi da raggiungere in tempi futuri. Fra questi: la preparazione a un esame, l'apprendimento di un'arte o di una lingua, la produzione di oggetti, il raggiungimento di certi traguardi in attività atletiche, il guadagno di certe somme. Il successo sarà più probabile se controlleremo frequentemente a che punto siamo arrivati rispetto al piano iniziale. Se portiamo troppo ritardo, formuliamo e adottiamo un piano di emergenza.

Trattati severamente, dunque: conviene essere un po' l'aguzzino di te stesso: in greco si diceva "seautontimoroumenos" parola che Menandro usò come titolo di una sua tragedia, 23 secoli fa.

notiziario

Nei Cebi l'uso di strumenti in pietra migliora la dieta

L'uso di semplici strumenti litici aumenta la qualità dell'alimentazione. Lo ha dimostrato un team interdisciplinare e intercontinentale, esaminando una popolazione di scimmie nel Nord-Est del Brasile. Ciò potrebbe essere accaduto anche nel corso dell'evoluzione umana. L'articolo

Stone tools improve diet quality in wild monkeys, di cui è autrice fra gli altri Elisabetta Visalberghi dell'Istituto di scienze e tecnologie della cognizione del Cnr, è stato appena pubblicato su «Current Biology»

I paleoantropologi sono da sempre interessati agli strumenti litici - gli unici sufficientemente durevoli da essere arrivati sino a noi ed essere studiati - utilizzati dalle varie specie di Homo (e non solo) che ci hanno preceduto. Negli anni '60 del secolo scorso si scoprì che anche alcune popolazioni di scimpanzè usano strumenti e oggi sappiamo che anche i cebi e macachi ne sono capaci. A tutt'oggi però, nessun studio aveva esaminato se e come l'uso di strumenti migliori la dieta. Lo ha fatto ora un team interdisciplinare dislocato in quattro

comportamento di una popolazione di cebi da molti anni oggetto di studio nel Nord-Est del Brasile. L'articolo Stone tools improve diet quality in wild monkeys, di cui è autrice fra gli altri Elisabetta Visalberghi dell'Istituto di scienze e tecnologie della cognizione (Istc) del Cnr, è stato appena pubblicato su «Current Biology». «I paleoantropologi hanno notato che all'aumento della complessità di strumenti litici si accompagna quello della dimensione della scatola cranica, e quindi del cervello» -spiega Visalberghi-«Dato che il cervello è una struttura energeticamente molto costosa da mantenere, però, i paleoantropologi

hanno ipotizzato che sia stato il

miglioramento della dieta, reso

l'evoluzione di cervelli di maggiori

dimensioni ed energeticamente più

possibile proprio dall'uso di

strumenti, ad aver permesso

dei cinque continenti, esaminando il

I cebi di Fazenda Boa Vista usano abitualmente grosse pietre per aprire noci di palma dal guscio durissimo e un precedente studio ha dimostrato che l'uso di strumenti è opportunista, avviene cioè quando le noci sono più abbondanti. Per queste piccole scimmie si tratta di un comportamento molto faticoso e che richiede anni e anni di pratica per essere appreso? Perché farlo? Quale vantaggio nutrizionale i cebi ricavano dall'uso di strumenti? «Per rispondere a queste domande in maniera adeguata -domanda che stranamente nessuno si era mai posto prima- abbiamo dovuto

determinare la quantità e la qualità del cibo ingerito nel corso di tutta la giornata da ciascun cebo nei giorni in cui usava strumenti (e mangiava anche noci di palma) e nei giorni in cui non li usava», spiega la Visalberghi. Lucas Peternelli-

dos-Santos, allora dottorando dell'Università brasiliana di San Paolo, per più di un anno, ogni giorno dall'alba al tramonto ha seguito senza mai perderlo di vista un determinato cebo registrando tutto ciò che faceva, tutto ciò che mangiava e quanto ne mangiava. «Con l'aiuto di assistenti locali sono stati raccolti, identificati e seccati tutti i cibi che ciascun individuo aveva ingerito in ciascun giorno e poi in laboratorio ha esaminato il contenuto in termini di macronutrienti», prosegue Visalberghi. «Abbiamo poi confrontato i l'energia e i macronutrienti acquisiti nei giorni in cui i cebi usavano e in cui non usavano strumenti. Naturalmente è stato anche considerato il peso di ciascun individuo, da cui dipende il suo fabbisogno energetico, e l'elevato costo energetico richiesto dal sollevare sassi pesanti e usarli come percussori». Lo scopo è evidentemente valutare la convenienza dell'uso di strumenti nel rapporto tra dispendio calorico relativo e beneficio nutrizionale che se ne ricava. L'analisi qualitativa ha permesso poi di calcolare quante calorie assunte giornalmente provenivano da proteine, carboidrati, lipidi e il contenuto in fibre. «I risultati mostrano che a pari quantità di cibo ingerito in termini di peso secco, l'uso di strumenti permette ai cebi di acquisire circa il 50% di calorie in più al giorno, da 368 a 537 kcal per kg di peso. A livello qualitativo aumenta la quantità di lipidi e carboidrati ingeriti, mentre quella di proteine

non differisce. È interessante notare che quando i cebi usano strumenti la quantità di proteine ingerite varia da giorno a giorno meno di quanto non accada quando non ne usano. Si tratta della "protein prioritization" che si osserva anche nell'uomo contemporaneo, fenomeno descritto da David Raubenheimer della University of Sydney, in Australia, collaboratore dello studio». L'uso di strumenti, dunque, migliora la qualità dell'alimentazione. «Da un lato permette di ottenere una dieta più bilanciata, con una maggiore quantità di macronutrienti che forniscono energia, quali i grassi e i carboidrati. Dall'altro, dato che nei giorni in cui i cebi usano strumenti la quantità di fibre è inferiore del 7%, il mix di macronutrienti che ingeriscono diventa più concentrato. L'assunzione di una quantità minore di fibre permette all'apparato digestivo di assorbire le sostanze nutritive con maggiore efficienza» conclude la primatologa- «L'uso di percussori permette ai cebi di assumere più calorie e di migliorare la dieta, ed è ipotizzabile che ciò sia avvenuto anche nel corso della nostra storia evolutiva ben prima che gli strumenti litici, da semplici pietre, diventassero ben più elaborati».

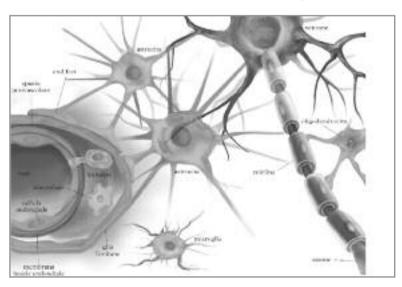
Mortalità da ondate di calore nel Mediterraneo

Una ricerca pubblicata sulla rivista Global Change Biology coordinata da Institut de Ciències del Mar (ICM-CSIC) di Barcellona, cui ha partecipato il Cnr-Irbim in collaborazione con altri 30 gruppi di ricerca provenienti da 11 paesi, è in grado di ricostruire per la prima volta gli effetti delle mortalità di massa su scala mediterranea di 50 diverse specie marine

Tra il 2015 e il 2019 una serie di ondate di calore ha colpito tutte le regioni del bacino mediterraneo, provocando eventi di mortalità di massa in 50 diverse specie marine come coralli, spugne, macroalghe e anche pesci. Secondo una ricerca internazionale pubblicata sulla rivista Global Change Biology cui ha partecipato l'Istituto per le risorse biologiche e le biotecnologie

marine del Consiglio nazionale delle ricerche (Cnr-Irbim), questi fenomeni hanno interessato migliaia di chilometri di coste mediterranee, dal Mare di Alboran sino alle coste orientali, tra la superficie e i 45 metri di profondità. «Purtroppo, i risultati del lavoro mostrano per la prima volta un'accelerazione degli impatti ecologici associati ai cambiamenti climatici, una minaccia senza precedenti per la salute e il funzionamento dei suoi ecosistemi. Preoccupa, inoltre, l'interazione tra il riscaldamento e la presenza di nuovi patogeni negli ambienti marini con effetti ancora poco conosciuti. Dall'eccezione alla norma, la crisi climatica sta colpendo gravemente gli ecosistemi marini di tutto il mondo e il Mediterraneo è un hotspot di particolare rilievo», spiega Ernesto Azzurro, ricercatore del Cnr-Irbim. I dati forniti dallo studio hanno permesso di dimostrare che esiste una relazione significativa tra la durata delle ondate di calore e l'incidenza degli eventi di mortalità. «Gli eventi di mortalità di massa nel Mediterraneo sono equivalenti agli eventi di sbiancamento osservati consecutivamente anche nella Grande Barriera Corallina. suggerendo che questi episodi sono già la norma piuttosto che l'eccezione», sottolinea Carlo Cerrano, dell'Università Politecnica delle Marche.

La ricerca è stata svolta in collaborazione con oltre 30 gruppi di ricerca provenienti da 11 paesi, che ha permesso di rilevare l'incidenza e la gravità del fenomeno in ogni angolo del bacino. Gli autori stanno lavorando al rafforzamento della cooperazione scientifica a tutti i livelli, al fine di sollevare la drammaticità dell'emergenza climatica in corso, un'emergenza che deve essere oggi


considerata in tutte le scelte gestionali e politiche. «Le ondate di calore marine registrate tra il 2015 e il 2019 sono state eccezionali, rispetto ai dati disponibili che coprono gli ultimi 30 anni, interessando oltre il 90% della superficie del Mediterraneo e raggiungendo temperature superiori ai 26°C» -spiega Joaquim Garrabou, ricercatore del Institut de Ciències del Mar (ICM-CSIC) di Barcellona e coordinatore dello studio- «Tra le specie più colpite ci sono specie fondamentali per mantenere il funzionamento e la biodiversità degli ecosistemi costieri come, a esempio, le praterie di Posidonia oceanica o il coralligeno, che rappresentano due degli habitat più emblematici del Mediterraneo».

Cervello: scoperti meccanismi modulatori nelle trasmissioni sinaptiche

Uno studio dell'Istituto di neuroscienze del Cnr e dell'Università di Padova, pubblicato su «Cells», mette in evidenza l'attività di regolazione svolta dagli astrociti nei circuiti cerebrali inibitori, con un possibile impatto positivo su disturbi come l'epilessia

Diversi studi dimostrano che gli astrociti, le cellule gliali più diffuse nel sistema nervoso centrale, svolgono un ruolo fondamentale nel cervello mediante il rilascio di gliotrasmettitori, che contribuiscono alla modulazione della trasmissione sinaptica. Nella corteccia cerebrale,

la popolazione neuronale è rappresentata da neuroni eccitatori e interneuroni inibitori. Le disfunzioni interneuronali sono implicate in alcune malattie del cervello, come epilessia, schizofrenia ed autismo, nelle quali è presente uno squilibrio nell'eccitazione-inibizione: chiarire i ruoli dei neuroni inibitori nel circuito neuronale-astrocitario può aiutare a comprendere il contributo degli stessi nei disturbi cerebrali. Uno studio dell'Istituto di neuroscienze del Consiglio nazionale delle ricerche (Cnr-In), recentemente pubblicato dalla rivista Cells, descrive un meccanismo che modula la trasmissione inibitoria tra astrociti e interneuroni finora non identificato. che dimostra l'importanza degli astrociti nel bilanciare l'attività sinaptica nella corteccia visiva di modelli murini attraverso tecniche di imaging (microscopia a due fotoni per studiare l'attività Ca2+ degli astrociti) ed elettrofisiologia (che permette di indagare se il reclutamento degli astrociti, in seguito ad un'intensa stimolazione degli interneuroni, modula l'inibizione sinaptica sui neuroni eccitatori), combinate con optogenetica (una tecnica utilizzata per stimolare le cellule cerebrali attraverso l'emissione di un fascio di luce blu). «Un'intensa stimolazione optogenetica in una sottopopolazione di interneuroni riduce l'inibizione nei neuroni eccitatori, per un fenomeno denominato disinibizione», afferma Vanessa Jorge Henriques, prima autrice dello studio, svolto durante il

suo dottorato all'Università di Padova sotto la responsabilità scientifica di Giorgio Carmignoto. «Questo evento viene controbilanciato dagli astrociti che riducono la disinibizione, garantendo l'equilibrio del sistema e rafforzando così l'idea che queste cellule siano ingranaggi importanti dei circuiti cerebrali, soprattutto per quanto riguarda le sinapsi inibitorie. Un potenziale impatto dell'attivazione degli astrociti tramite il segnale degli interneuroni è rivolto ai disturbi cerebrali, come l'epilessia», conclude Henriques. «Tuttavia, la disinibizione può svolgere un ruolo importante nell'epilessia, poiché oltre a un'attività eccitatoria anormale rivela un abbassamento della soglia di attivazione dei neuroni coinvolti, facilitando l'innesco di crisi convulsive. In questo contesto gli astrociti potrebbero svolgere un ruolo anticonvulsivante contrastando la disinibizione, mentre un segnale difettoso tra interneuroni e astrociti potrebbe favorire l'attività epilettica».

Luce liquida in un chip

Pubblicato su «Nature» uno studio frutto di una collaborazione internazionale guidata dall'Istituto di nanotecnologia del Cnr e dall'Università di Pavia in cui viene osservata per la prima volta la formazione di un fluido quantistico di luce su un microchip integrabile con l'elettronica tradizionale. Questi esperimenti, realizzati all'Istituto di nanotecnologia di Lecce hanno profonde implicazioni sia per lo studio delle proprietà

fondamentali dei sistemi di bosoni interagenti sia per lo sviluppo di tecnologie per l'informazione quantistica

La materia esiste in differenti stati:

solido, liquido, gassoso e plasma. A

questi però se ne deve aggiungere

un quinto: il condensato di Bose-Einstein, in grado di connettere il comportamento dei sistemi di particelle a livello microscopico (regolato dalle leggi della meccanica quantistica) e quello macroscopico in genere regolato dalla fisica classica. In un recente studio pubblicato su «Nature», guidato dall'Istituto di nanotecnologia del Consiglio nazionale delle ricerche di Lecce (Cnr-Nanotec) e dal Dipartimento di Fisica dell'Università di Pavia, è stato progettato e realizzato per la prima volta un microchip in grado di formare un condensato di Bose-Einstein quando eccitato da luce laser. Tale microchip è ottenuto a partire da una semplice guida d'onda planare di semiconduttore, consentendo la formazione di fluidi quantistici di luce su un chip integrabile con l'elettronica tradizionale. Questi risultati sono il frutto di una collaborazione comprendente, oltre agli enti italiani già citati, anche studiosi della Princeton University, del Lawrence Berkeley National Laboratory e dell'Ecole Centrale de Lyon. Ma l'interesse dello studio non finisce qui. Oltre alla facilità nell'ottenere e studiare questi fluidi quantistici in un microchip, tale condensazione, invece di aver luogo nel minimo di una banda energetica (Fig. 1a), è avvenuta in uno stato intrinsecamente instabile, quello che si chiama punto di sella (Fig. 1b). Questo fenomeno, apparentemente paradossale, è in realtà possibile grazie alle proprietà di simmetria della guida d'onda che, proteggendo le particelle del condensato dalle perturbazioni esterne, ne permettono la formazione e lo rendono particolarmente stabile nel tempo. «In un condensato di Bose-Einstein» -spiega Vincenzo Ardizzone, ricercatore al Cnr-Nanotec- «le particelle (in questo caso dei bosoni interagenti) occupano collettivamente un unico stato del sistema. In condizioni opportune, un sistema di questo tipo può comportarsi come un fluido 'quantistico' in grado, a differenza dei fluidi classici, di superare ostacoli senza subire deviazioni». «Il fenomeno della condensazione di Bose-Einstein è stato recentemente osservato anche nei materiali semiconduttori stimolati otticamente mediante laser, in cui è possibile ottenere delle quasiparticelle di natura ibrida, ovvero costituite da fotoni e stati eccitati della materia, dette 'polaritoni'», aggiunge Dario Gerace, co-autore del lavoro e docente di Fisica teorica della Materia presso il Dipartimento di Fisica di Pavia. «I polaritoni si comportano come bosoni, e negli ultimi 10 anni si sono osservate tutte le tipiche proprietà di coerenza di un condensato di Bose-Einstein, come superfluidità e formazione spontanea di vortici, perfino a temperatura ambiente». «Questi esperimenti, che portiamo avanti da diversi anni nei laboratori di Lecce» -spiega Daniele Sanvitto, dirigente di ricerca del Cnr-Nanotec e responsabile del team di fotonica

(b)

permesso di definire un nuovo concetto di fluido quantistico, spesso menzionato come 'fluido quantistico di luce'. C'è da considerare, tuttavia, che queste dimostrazioni sono finora state ottenute in sistemi nanostrutturati complessi, ovvero costituiti da multistrati di semiconduttori piuttosto spessi e costosi da realizzare.

avanzata- «hanno

Questa nuova osservazione, invece, oltre all'interesse di natura fondamentale, ovvero lo studio di fenomeni fisici unici - che normalmente si verificano solo a temperature bassissime in sistemi complessi come gas atomici confinati ed isolati dall'ambiente esterno – promette anche notevoli risvolti applicativi, quali ad esempio la realizzazione di sorgenti di luce coerente (laser) a bassa soglia (o a soglia nulla), la realizzazione di circuiti ottici privi di dissipazione (e quindi basso consumo energetico) per computazione ultraveloce, così come la loro applicazione alla computazione neuromorfica (circuiti neuronali ottici) grazie alle forti interazioni nonlineari tra fluidi quantistici».

«Questi dispositivi potrebbero prevedere inoltre possibili applicazioni nel sensing, grazie alla notevole sensibilità dei polaritoni alle condizioni esterne e all'ambiente: campi elettrici e magnetici, potenziali chimici ecc. Applicazioni tutte di notevole interesse verso le quali il team di fotonica avanzata del Cnr-Nanotec mostra grande attenzione facendo dei nostri laboratori un riferimento di eccellenza internazionale», conclude Giuseppe Gigli, direttore del Cnr-Nanotec.

Alzheimer: nuovi elementi per comprendere la neurodegenerazione

Uno studio svolto dai ricercatori dell'Istituto di neuroscienze del Consiglio nazionale delle ricerche aggiunge un importante tassello nella comprensione dei meccanismi di progressione della malattia, aprendo nuove possibili strategie terapeutiche nella lotta alla patologia. La ricerca pubblicata su «Brain»

La malattia di Alzheimer è caratterizzata da un progressivo deterioramento delle funzioni cognitive: nelle prime fasi la patologia si manifesta con una graduale perdita della memoria dovuta all'accumulo nel tessuto cerebrale della proteina beta-amiloide, che altera il funzionamento delle sinapsi fino a

sfociare in un declino cognitivo dovuto alla degenerazione di ampie zone di corteccia cerebrale. Come avviene tale processo di neurodegenerazione è quanto ha provato a indagare uno studio, pubblicato sulla rivista «Brain», svolto dai ricercatori dell'Istituto di neuroscienze del Consiglio nazionale delle ricerche (Cnr-In), frutto della collaborazione tra il gruppo di ricerca di Pisa coordinato da Nīcola Origlia e quello di Milano coordinato da Claudia Verderio. «La ricerca si è concentrata sullo studio della corteccia entorinale, un'area cerebrale che sembra essere particolarmente vulnerabile all'accumulo della proteina betaamiloide: è qui, infatti, che ha inizio il processo infiammatorio nel quale sono coinvolte le cellule microgliali, cioè particolari cellule immunitarie del cervello» -spiega Nicola Origlia, ricercatore del Cnr-In- «Con il progredire della malattia, la neurodegenerazione si diffonde grazie alle cellule microgliali presenti nella corteccia entorinale ad altre aree cerebrali, con conseguente perdita delle funzioni da esse sostenute». In tale processo, un ruolo particolare

In tale processo, un ruolo particolare è svolto dalle vescicole extracellulari contenenti la proteina beta-amiloide prodotte dalle cellule microgliali: muovendosi lungo le connessioni neuronali, tali vescicole propagano le alterazioni attraverso un circuito fondamentale per la memoria, ovvero quello che collega la corteccia entorinale all'ippocampo.

«Utilizzando tecniche di imaging, è stato possibile osservare l'interazione tra le vescicole contenenti proteina beta-amiloide e la superficie del neurone, dimostrando il loro movimento lungo il processo assonale, cioè il processo che trasferisce l'impulso nervoso a un'altra cellula» aggiunge Claudia Verderio, ricercatrice del Cnr-In- «Inoltre, abbiamo dimostrato che riducendo la motilità delle vescicole a seguito di trattamento farmacologico si previene la propagazione dei deficit sinaptici tra la corteccia entorinale e l'ippocampo: questo apre nuove prospettive di intervento terapeutico volte a rallentare, se non a fermare, la progressione della malattia».

Scoperto meccanismo di defibrillazione intrinseco del cuore

Un approccio interdisciplinare che vede coinvolti ricercatori dell'Istituto nazionale di ottica del Cnr con ricercatori dell'Università di Firenze e del Lens nonché enti stranieri come l'Università di Friburgo (Germania), Max Plank (Germania) e McGill University (Canada), ha reso possibile la scoperta di un sistema di terminazione spontanea delle aritmie cardiache. L'articolo pubblicato su «Basic Research in Cardiology»

Grazie alle competenze in fisiologia cardiaca e microscopia ottica presenti all'interno dell'Istituto nazionale di ottica del Consiglio nazionale delle ricerche (Cnr-Ino). dell'Università di Firenze e del Laboratorio europeo di spettroscopia non-lineare (Lens), è stato scoperto un nuovo meccanismo di protezione che il cuore applica in presenza di tachicardie ventricolari. Il lavoro. pubblicato sulla rivista «Basic Research in Cardiology», ha dimostrato come in presenza di ritmi rapidi nel cuore si instaurano delle complesse oscillazioni elettriche che portano al risincronizzare del ritmo cardiaco, in altre parole una sorta di autodefibrillazione.

«Il nostro cuore si contrae con ritmi regolari grazie ad una sequenza di impulsi elettrici chiamati potenziali d'azione. Le aritmie cardiache sono alterazioni della frequenza e della propagazione di tali impulsi. Tra le varie aritmie cardiache troviamo la tachicardia ventricolare in cui la frequenza cardiaca è significativamente aumentata» spiega Leonardo Sacconi, primo ricercatore del Cnr Ino-«Quest'ultima è un tipo di aritmia pericolosa in quanto può degenerare in fibrillazione ventricolare, con esiti fatali».

I ricercatori hanno studiato le dinamiche elettriche alla base della tachicardia ventricolare, andando anche a esplorare quali misure il cuore mette in atto per contrastare le aritmie. «Abbiamo osservato che i segnali elettrici che precedono la terminazione spontanea di una tachicardia ventricolare sono caratterizzati da una dinamica oscillatoria di impulsi di durata diversa da un battito all'altro chiamata alternans» -spiega Valentina Biasci, primo autore dello studio e assegnista di ricerca presso il Lens- «Sfruttando l'optogenetica, una tecnica emergente che permette di manipolare l'attività elettrica del cuore mediante l'utilizzo della luce, è stato possibile amplificare le dinamiche oscillatorie durante tachicardie ventricolari». I risultati sono andati oltre le aspettative. «Quando le alternans venivano aumentate, abbiamo riscontrato una maggiore suscettibilità da parte del cuore all'auto-terminazione dell'evento aritmico» -aggiunge Sacconi-«Questo ci ha permesso di dimostrare l'effetto cardioprotettivo delle alternans durante gli eventi aritmici, come se fossero un vero e proprio meccanismo di difesa innescato dal cuore stesso al fine di risincronizzarsi».

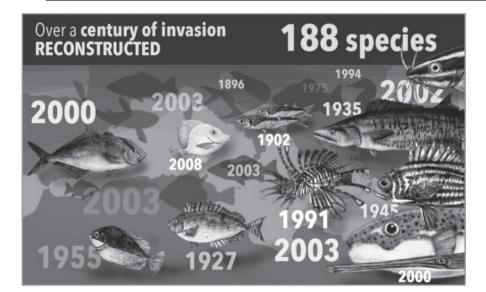
Possibile lo sviluppo di una nuova generazione di farmaci e dispositivi medici antiaritmici che sfruttano come meccanismo d'azione l'aumento delle alternans cardiache durante gli eventi aritmici. «Una possibile futura applicazione clinica potrebbe essere la progettazione di un defibrillatore cardiaco impiantabile a bassa energia, a fronte di quelli attuali la cui efficacia è limitata dai dolorosi shock elettrici che li caratterizzano», conclude Biasci.

Jstor nella Biblioteca Nazionale Centrale di Roma

Nella sala Emeroteca è stata istallata una postazione per accedere a jstor.org, archivio elettronico di articoli digitalizzati provenienti da oltre 1000 riviste accademiche e scientifiche.

Con JStor è possibile fare ricerche, consultare annate di riviste, scorrere gli indici e leggere gli articoli, cercare un articolo a partire da una citazione, salvare le citazioni, scaricare articoli full-text (su una propria pennetta USB). Una volta monitorata la soddisfazione dell'utenza, altre postazioni

verranno installate anche in altre sale.


Ci sono due modi per eseguire la ricerca di articoli in JStor: una ricerca Base, immettendo i termini della ricerca che verrà eseguita in tutti i contenuti e in tutte le discipline presenti nell'archivio elettronico oppure selezionando una particolare disciplina dall'elenco limitando quindi la ricerca nel suo ambito. Una ricerca Avanzata con cui è possibile affinare la stessa inserendo più parole chiave con anche le date di pubblicazione, il titolo della rivista, gli autori, la lingua e/o altre ulteriori opzioni. Selezionando "Browse" viene visualizzato l'elenco di tutti i numeri e gli articoli di una rivista per poi scegliere in numero o l'articolo da consultare. È possibile anche svolgere delle ricerche per soggetto, collezione o editore. Le collezioni messe a disposizione dalla Biblioteca nazionale centrale di Roma sono "Arts & Sciences Collection" (dalla I alla XV) e "Life Sciences Collection". Per averne un'idea e scaricare la lista delle testate contenute in ciascuna collezione si può consultare il seguente indirizzo: «https://about.jstor.org/librarians/jou rnals/multi-discipline/». Chiaramente è possibile memorizzare uno o più testi in formato PDF degli articoli consultati ma per far ciò gli utenti dovranno necessariamente essere muniti di un proprio dispositivo di archiviazione da collegare al PC di Emeroteca tramite USB. Le riviste in JStor prevedono delle

"moving walls" che definiscono il lasso di tempo che intercorre fra il numero più recente pubblicato e il contenuto disponibile in JStor. La maggior parte delle riviste nell'archivio prevedono moving walls compresi tra 3 e 5 anni ma gli editori possono scegliere periodi compresi tra 0 e 10 anni. Diversi editori forniscono collegamenti ai contenuti recenti nei loro siti Web ed è possibile includere tali citazioni di articoli nella ricerca JStor selezionando la casella "Search for links to articles outside of JStor".

200 nuovi pesci: il Mediterraneo è il mare più invaso al mondo

Una ricerca pubblicata dalla rivista «Global Change Biology» e coordinata dall'Istituto per le risorse biologiche e biotecnologie marine del Cnr di Ancona ricostruisce la storia delle invasioni biologiche nel mare nostrum, che negli ultimi 130 anni ha subito l'arrivo di circa duecento nuove specie ittiche grazie al cambiamento climatico

Con centinaia di specie esotiche, il Mar Mediterraneo viene oggi riconosciuto come la regione marina più invasa al mondo. Una ricerca pubblicata sulla prestigiosa rivista Global Change Biology e coordinata dall'Istituto per le risorse biologiche e biotecnologie marine (Cnr-Irbim) di Ancona, ricostruisce questa storia per le specie ittiche introdotte a partire dal 1896. «Lo studio dimostra come il fenomeno abbia avuto un'importante accelerazione a partire dagli anni '90 e come le invasioni più recenti siano capaci delle più rapide e spettacolari espansioni geografiche» -spiega Ernesto Azzurro del Cnr-Irbim e coordinatore della ricerca- «Da oltre un secolo, ricercatori e ricercatrici di tutti i paesi mediterranei hanno documentato nella letteratura scientifica questo fenomeno, identificando oltre 200 nuove specie ittiche e segnalando le loro catture e la loro progressiva espansione. Grazie alla revisione di centinaia di questi articoli e alla georeferenziazione di migliaia di

osservazioni, abbiamo potuto ricostruire la progressiva invasione nel Mediterraneo».

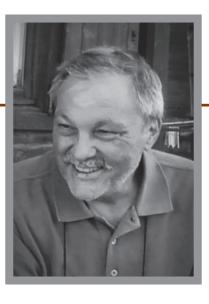
Tale processo ha cambiato per sempre la storia del nostro mare. Sono due le porte di ingresso di questa colonizzazione: «Le specie del Mar Rosso, entrate dal canale di Suez (inaugurato nel 1869), sono le più rappresentate e problematiche. Ci sono, tuttavia, altri importanti vettori come il trasporto navale ed il rilascio da acquari. I ricercatori hanno considerato anche la provenienza atlantica tramite lo stretto di Gibilterra», continua Azzurro.

Ma quali sono gli effetti ambientali e socio-economici di queste 'migrazioni ittiche'? «Alcune di queste specie costituiscono nuove risorse per la pesca, ben adattate a climi tropicali e già utilizzate nei settori più orientali del Mediterraneo». -spiega il ricercatore- «Allo stesso tempo, molti 'invasori' provocano il deterioramento degli habitat naturali, riducendo drasticamente la biodiversità locale ed entrando in competizione con specie native, endemiche e più vulnerabili. Il ritmo della colonizzazione è così rapido da aver già cambiato l'identità faunistica del nostro mare; pertanto ricostruire la storia del fenomeno permette di capire meglio la trasformazione in atto e fornisce un esempio emblematico di globalizzazione biotica negli ambienti marini dell'intero pianeta». La ricerca è stata svolta grazie al supporto dei progetti InterregMED MPA-Engage e del progetto @CNR **USEit**

Guglielmo Lucentini

Ricordo del nostro consocio e revisore dei conti Guglielmo Lucentini, venuto a mancare nel luglio 2020. Questa nota, tardiva, gli è dovuta per la preziosa e generosa collaborazione che Guglielmo ha dato alla nostra SIPS in circa venti anni.

Nato a Maracaibo, Venezuela, da genitori italiani il 7 febbraio del 1949, fu presentato alla SIPS dal Prof. Giulio D'Orazio e inserito con l'incarico di revisore dei conti, al tempo supplente. La sua formazione ha caratteristiche sia scientifiche che economiche con una Laurea in Scienze Organizzative e Gestionali conferitagli dall'Università di La Tuscia.


Il 27 dicembre 2004 l'allora Presidente della Repubblica Carlo Azeglio

Ciampi gli conferì l'onorificenza di Cavaliere al merito della Repubblica Italiana "In considerazione delle particolari benemerenze acquisite". Infatti aveva, tra l'altro, brevettato nel 1984 "La capsula di caffè" (Brevetto n.1209914, registrato a Roma, riportato nella rivista della SIPS "Scienza e Tecnica" nel numero di Dicembre 2013) di cui il chimico Luigi Campanella seppe apprezzare "nel modo opportuno la qualità del trovato di Guglielmo Lucentini e di tale trovato si sono avvalse poi con grande profitto numerosissime ditte del settore".

Ricoprì anche l'incarico di Perito Tecnico specializzato nel settore Qualità nella Direzione Informatica Telematica e Tecnologie Avanzate (Teledife) presso Ministero della Difesa.

Divenne, quindi, Auditor europeo per la Qualità, ponendo particolare attenzione alle modalità applicative delle I.S.O., E.M.A.S. e altre afferenti, tanto in territorio nazionale italiano, quanto europeo.

Uomo di altri tempi e di sana moralità ha sempre operato nell'interesse dello Stato e dei suoi cittadini, lasciando un ricordo di probità ai suoi colleghi sia italiani che europei ma soprattutto a noi che con colpevole ritardo vogliamo ricordarlo e ringraziarlo.

La SIPS - Società Italiana per il Progresso delle Scienze - onlus

«ha per scopo di promuovere il progresso, la coordinazione e la diffusione delle scienze e delle loro applicazioni e di favorire i rapporti e la collaborazione fra cultori di esse», svolgendo attività interdisciplinare e multidisciplinare di promozione del progresso delle scienze e delle loro applicazioni, organizzando studi e incontri che concernono sia il rapporto della collettività con il patrimonio culturale, reso più stretto dalle nuove possibilità di fruizione attraverso le tecnologie multimediali, nella ricerca delle cause e nella rilevazione delle conseguenze di lungo termine dell'evoluzione dei fattori economici e sociali a livello mondiale: popolazione, produzione alimentare e industriale, energia e uso delle risorse, impatti ambientali, ecc.

Le origini della Società Italiana per il Progresso delle Scienze si ricollegano al periodo anteriore al nostro Risorgimento politico, allorquando nella nostra penisola, smembrata in sette piccoli Stati, i più eminenti uomini di Scienza e di Lettere solevano riunirsi in Congresso. Nel 1839, a Pisa, fu tenuta la prima Riunione degli scienziati italiani, celebrata dal Giusti, nei noti versi:

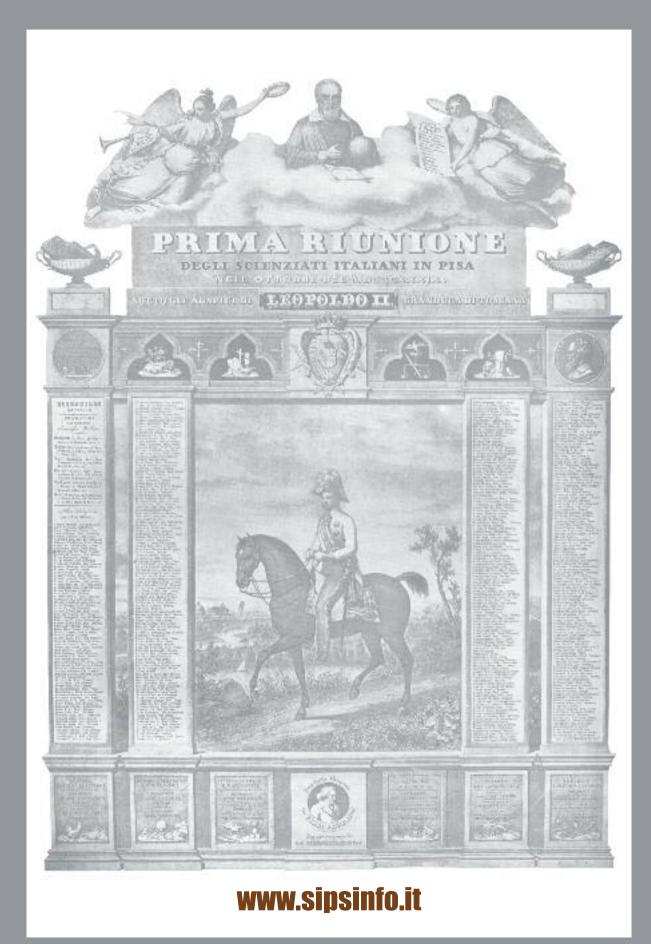
Di si nobile congresso Si rallegra con sè stesso Tutto l'uman genere.

Ciò che costituì, fin da principio un'importante caratteristica delle Riunioni degli scienziati italiani, fu la larga partecipazione del pubblico colto, a fianco dei più illustri scienziati. E di ciò danno conferma gli Atti delle Riunioni, e le testimonianze degli scrittori, italiani e stranieri del tempo. Oltre a dibattere tematiche a carattere scientifico-tecnico e culturale, la SIPS pubblica e diffonde i volumi degli Atti congressuali e Scienza e Tecnica, palestra di divulgazione di articoli e scritti inerenti all'uomo tra natura e cultura.

Gli articoli, salvo diversi accordi, devono essere contenuti in un testo di non oltre 4 cartelle dattiloscritte su una sola facciata di circa 30 righe di 80 battute ciascuna, comprensive di eventuali foto, grafici e tabelle. Possono far parte della SIPS persone fisiche e giuridiche (università, istituti, scuole, società, associazioni e, in generale, enti) che risiedono in Italia e all'estero, interessate al progresso delle scienze e che si propongano di favorirne la diffusione (art. 7 dello statuto).

CONSIGLIO DI PRESIDENZA

Luigi Berlinguer, *presidente onorario*; Maurizio Luigi Cumo, *presidente onorario*; Antonio Speranza, *presidente*; Enzo Casolino, *segretario generale*; Barbara Martini, *amministratore*; Michele Anaclerio, Mauro Cappelli, Annamaria Colacci, Filomena Rocca, Giuseppe Scarascia Mugnozza, Stefano Tibaldi, Nicola Vittorio, *consiglieri*; Alfredo Martini, *consigliere onorario*.


Revisori dei conti: Elena Maratea, Giampiero Castriciano, Antonello Sanò.

COMITATO SCIENTIFICO

Carlo Blasi, Maria Simona Bonavita, Marco Casolino, Federico Cinquepalmi, Mario Cipolloni, Ireneo Ferrari, Waldimaro Fiorentino Gaetano Frajese, Gianfranco Ghirlanda, Mario Giacovazzo, Giorgio Gruppioni, Michele Lanzinger, Salvatore Lorusso, Nicola Occhiocupo, Gianni Orlandi, Elvidio Lupia Palmeri, Emanuela Reale, Renato Angelo Ricci, Mario Rusconi, Cesare Silvi, Roberto Vacca, Bianca M. Zani.

SOCI

Possono far parte della SIPS persone fisiche e giuridiche (università, istituti, scuole, società, associazioni ed in generale, enti) che risiedono in Italia e all'estero, interessate al progresso delle scienze e che si propongano di favorirne la diffusione (art. 7 dello statuto).

scienza e tecnica on line